fcntl - file control
#include <unistd.h>
#include <fcntl.h>
int fcntl(int fildes, int cmd, ...);
The fcntl() function shall perform the operations described below on open files. The fildes argument is a file descriptor.
The available values for cmd are defined in <fcntl.h> and are as follows:
The following values for cmd are available for advisory record locking. Record locking shall be supported for regular files, and may be supported for other files.
Additional implementation-defined values for cmd may be defined in <fcntl.h>. Their names shall start with F_.
When a shared lock is set on a segment of a file, other processes shall be able to set shared locks on that segment or a portion of it. A shared lock prevents any other process from setting an exclusive lock on any portion of the protected area. A request for a shared lock shall fail if the file descriptor was not opened with read access.
An exclusive lock shall prevent any other process from setting a shared lock or an exclusive lock on any portion of the protected area. A request for an exclusive lock shall fail if the file descriptor was not opened with write access.
The structure flock describes the type ( l_type), starting offset ( l_whence), relative offset ( l_start), size ( l_len), and process ID ( l_pid) of the segment of the file to be affected.
The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate that the relative offset l_start bytes shall be measured from the start of the file, current position, or end of the file, respectively. The value of l_len is the number of consecutive bytes to be locked. The value of l_len may be negative (where the definition of off_t permits negative values of l_len). The l_pid field is only used with F_GETLK to return the process ID of the process holding a blocking lock. After a successful F_GETLK request, when a blocking lock is found, the values returned in the flock structure shall be as follows:
If the command is F_SETLKW and the process must wait for another process to release a lock, then the range of bytes to be locked shall be determined before the fcntl() function blocks. If the file size or file descriptor seek offset change while fcntl() is blocked, this shall not affect the range of bytes locked.
If l_len is positive, the area affected shall start at l_start and end at l_start+ l_len-1. If l_len is negative, the area affected shall start at l_start+ l_len and end at l_start-1. Locks may start and extend beyond the current end of a file, but shall not extend before the beginning of the file. A lock shall be set to extend to the largest possible value of the file offset for that file by setting l_len to 0. If such a lock also has l_start set to 0 and l_whence is set to SEEK_SET, the whole file shall be locked.
There shall be at most one type of lock set for each byte in the file. Before a successful return from an F_SETLK or an F_SETLKW request when the calling process has previously existing locks on bytes in the region specified by the request, the previous lock type for each byte in the specified region shall be replaced by the new lock type. As specified above under the descriptions of shared locks and exclusive locks, an F_SETLK or an F_SETLKW request (respectively) shall fail or block when another process has existing locks on bytes in the specified region and the type of any of those locks conflicts with the type specified in the request.
All locks associated with a file for a given process shall be removed when a file descriptor for that file is closed by that process or the process holding that file descriptor terminates. Locks are not inherited by a child process.
A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to lock another process' locked region. If the system detects that sleeping until a locked region is unlocked would cause a deadlock, fcntl() shall fail with an [EDEADLK] error.
An unlock (F_UNLCK) request in which l_len is non-zero and the offset of the last byte of the requested segment is the maximum value for an object of type off_t, when the process has an existing lock in which l_len is 0 and which includes the last byte of the requested segment, shall be treated as a request to unlock from the start of the requested segment with an l_len equal to 0. Otherwise, an unlock (F_UNLCK) request shall attempt to unlock only the requested segment.
When the file descriptor fildes refers to a shared memory object, the behavior of fcntl() shall be the same as for a regular file except the effect of the following values for the argument cmd shall be unspecified: F_SETFL, F_GETLK, F_SETLK, and F_SETLKW.
If fildes refers to a typed memory object, the result of the fcntl() function is unspecified.
Upon successful completion, the value returned shall depend on cmd as follows:
Otherwise, -1 shall be returned and errno set to indicate the error.
The fcntl() function shall fail if:
The cmd argument is F_SETLK; the type of lock ( l_type) is a shared (F_RDLCK) or exclusive (F_WRLCK) lock and the segment of a file to be locked is already exclusive-locked by another process, or the type is an exclusive lock and some portion of the segment of a file to be locked is already shared-locked or exclusive-locked by another process.
The fcntl() function may fail if:
The following sections are informative.
The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number of arguments. It is used because System V uses pointers for the implementation of file locking functions.
The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow for future growth. Applications using these functions should do a read-modify-write operation on them, rather than assuming that only the values defined by this volume of IEEE Std 1003.1-2001 are valid. It is a common error to forget this, particularly in the case of F_SETFD.
This volume of IEEE Std 1003.1-2001 permits concurrent read and write access to file data using the fcntl() function; this is a change from the 1984 /usr/group standard and early proposals. Without concurrency controls, this feature may not be fully utilized without occasional loss of data.
Data losses occur in several ways. One case occurs when several processes try to update the same record, without sequencing controls; several updates may occur in parallel and the last writer "wins". Another case is a bit-tree or other internal list-based database that is undergoing reorganization. Without exclusive use to the tree segment by the updating process, other reading processes chance getting lost in the database when the index blocks are split, condensed, inserted, or deleted. While fcntl() is useful for many applications, it is not intended to be overly general and does not handle the bit-tree example well.
This facility is only required for regular files because it is not appropriate for many devices such as terminals and network connections.
Since fcntl() works with "any file descriptor associated with that file, however it is obtained", the file descriptor may have been inherited through a fork() or exec operation and thus may affect a file that another process also has open.
The use of the open file description to identify what to lock requires extra calls and presents problems if several processes are sharing an open file description, but there are too many implementations of the existing mechanism for this volume of IEEE Std 1003.1-2001 to use different specifications.
Another consequence of this model is that closing any file descriptor for a given file (whether or not it is the same open file description that created the lock) causes the locks on that file to be relinquished for that process. Equivalently, any close for any file/process pair relinquishes the locks owned on that file for that process. But note that while an open file description may be shared through fork(), locks are not inherited through fork(). Yet locks may be inherited through one of the exec functions.
The identification of a machine in a network environment is outside the scope of this volume of IEEE Std 1003.1-2001. Thus, an l_sysid member, such as found in System V, is not included in the locking structure.
Changing of lock types can result in a previously locked region being split into smaller regions.
Mandatory locking was a major feature of the 1984 /usr/group standard.
For advisory file record locking to be effective, all processes that have access to a file must cooperate and use the advisory mechanism before doing I/O on the file. Enforcement-mode record locking is important when it cannot be assumed that all processes are cooperating. For example, if one user uses an editor to update a file at the same time that a second user executes another process that updates the same file and if only one of the two processes is using advisory locking, the processes are not cooperating. Enforcement-mode record locking would protect against accidental collisions.
Secondly, advisory record locking requires a process using locking to bracket each I/O operation with lock (or test) and unlock operations. With enforcement-mode file and record locking, a process can lock the file once and unlock when all I/O operations have been completed. Enforcement-mode record locking provides a base that can be enhanced; for example, with sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so other processes could read it, but none of them could write it.
Mandatory locks were omitted for several reasons:
Mandatory lock setting was done by multiplexing the set-group-ID bit in most implementations; this was confusing, at best.
The relationship to file truncation as supported in 4.2 BSD was not well specified.
Any publicly readable file could be locked by anyone. Many historical implementations keep the password database in a publicly readable file. A malicious user could thus prohibit logins. Another possibility would be to hold open a long-distance telephone line.
Some demand-paged historical implementations offer memory mapped files, and enforcement cannot be done on that type of file.
Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a timeout facility in applications requiring it. This is useful in deadlock detection. Since implementation of full deadlock detection is not always feasible, the [EDEADLK] error was made optional.
alarm() , close() , exec() , open() , sigaction() , the Base Definitions volume of IEEE Std 1003.1-2001, <fcntl.h>, <signal.h>, <unistd.h>
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |