The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

ztrrfs (3)
  • >> ztrrfs (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         ztrrfs - provide error bounds and backward  error  estimates
         for the solution to a system of linear equations with a tri-
         angular coefficient matrix
    
    SYNOPSIS
         SUBROUTINE ZTRRFS( UPLO, TRANS, DIAG, N, NRHS,  A,  LDA,  B,
                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
    
         CHARACTER DIAG, TRANS, UPLO
    
         INTEGER INFO, LDA, LDB, LDX, N, NRHS
    
         DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
    
         COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ), X( LDX, * )
    
    
    
         #include <sunperf.h>
    
         void ztrrfs(char uplo, char trans, char  diag,  int  n,  int
                   nrhs,  doublecomplex  *za,  int lda, doublecomplex
                   *zb, int ldb, doublecomplex *zx, int  ldx,  double
                   *ferr, double *berr, int *info) ;
    
    PURPOSE
         ZTRRFS provides error bounds and  backward  error  estimates
         for the solution to a system of linear equations with a tri-
         angular coefficient matrix.
    
         The solution matrix X must be computed  by  ZTRTRS  or  some
         other  means  before entering this routine.  ZTRRFS does not
         do iterative refinement because doing so cannot improve  the
         backward error.
    
    
    ARGUMENTS
         UPLO      (input) CHARACTER*1
                   = 'U':  A is upper triangular;
                   = 'L':  A is lower triangular.
    
         TRANS     (input) CHARACTER*1
                   Specifies the form of the system of equations:
                   = 'N':  A * X = B     (No transpose)
                   = 'T':  A**T * X = B  (Transpose)
                   = 'C':  A**H * X = B  (Conjugate transpose)
    
         DIAG      (input) CHARACTER*1
                   = 'N':  A is non-unit triangular;
                   = 'U':  A is unit triangular.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         NRHS      (input) INTEGER
                   The number of right hand sides, i.e.,  the  number
                   of columns of the matrices B and X.  NRHS >= 0.
    
         A         (input) COMPLEX*16 array, dimension (LDA,N)
                   The triangular matrix A.  If UPLO = 'U', the lead-
                   ing  N-by-N  upper  triangular part of the array A
                   contains the  upper  triangular  matrix,  and  the
                   strictly  lower triangular part of A is not refer-
                   enced.  If UPLO = 'L', the  leading  N-by-N  lower
                   triangular  part of the array A contains the lower
                   triangular matrix, and the strictly upper triangu-
                   lar  part  of A is not referenced.  If DIAG = 'U',
                   the diagonal elements of A are also not referenced
                   and are assumed to be 1.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         B         (input) COMPLEX*16 array, dimension (LDB,NRHS)
                   The right hand side matrix B.
    
         LDB       (input) INTEGER
                   The leading dimension of  the  array  B.   LDB  >=
                   max(1,N).
    
         X         (input) COMPLEX*16 array, dimension (LDX,NRHS)
                   The solution matrix X.
    
         LDX       (input) INTEGER
                   The leading dimension of  the  array  X.   LDX  >=
                   max(1,N).
    
         FERR      (output) DOUBLE PRECISION array, dimension (NRHS)
                   The estimated forward error bound for  each  solu-
                   tion  vector X(j) (the j-th column of the solution
                   matrix  X).   If  XTRUE  is  the   true   solution
                   corresponding  to  X(j),  FERR(j)  is an estimated
                   upper bound for the magnitude of the largest  ele-
                   ment in (X(j) - XTRUE) divided by the magnitude of
                   the largest element in X(j).  The estimate  is  as
                   reliable  as the estimate for RCOND, and is almost
                   always a slight overestimate of the true error.
    
         BERR      (output) DOUBLE PRECISION array, dimension (NRHS)
                   The componentwise relative backward error of  each
                   solution  vector X(j) (i.e., the smallest relative
                   change in any element of A or B that makes X(j) an
                   exact solution).
    
         WORK      (workspace) COMPLEX*16 array, dimension (2*N)
    
         RWORK     (workspace) DOUBLE PRECISION array, dimension (N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру