NAME ztrevc - compute some or all of the right and/or left eigen- vectors of a complex upper triangular matrix T SYNOPSIS SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO ) CHARACTER HOWMNY, SIDE INTEGER INFO, LDT, LDVL, LDVR, M, MM, N LOGICAL SELECT( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), WORK( * ) #include <sunperf.h> void ztrevc(char side, char howmny, int *select, int n, doublecomplex *t, int ldt, doublecomplex *vl, int ldvl, doublecomplex *vr, int ldvr, int mm, int *m, int *info) ; PURPOSE ZTREVC computes some or all of the right and/or left eigen- vectors of a complex upper triangular matrix T. The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w are defined by: T*x = w*x, y'*T = w*y' where y' denotes the conjugate transpose of the vector y. If all eigenvectors are requested, the routine may either return the matrices X and/or Y of right or left eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an input unitary matrix. If T was obtained from the Schur factorization of an original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of right or left eigenvectors of A. ARGUMENTS SIDE (input) CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. HOWMNY (input) CHARACTER*1 = 'A': compute all right and/or left eigenvec- tors; = 'B': compute all right and/or left eigenvec- tors, and backtransform them using the input matrices supplied in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, specified by the logical array SELECT. SELECT (input) LOGICAL array, dimension (N) If HOWMNY = 'S', SELECT specifies the eigenvectors to be computed. If HOWMNY = 'A' or 'B', SELECT is not referenced. To select the eigenvector corresponding to the j-th eigenvalue, SELECT(j) must be set to .TRUE.. N (input) INTEGER The order of the matrix T. N >= 0. T (input/output) COMPLEX*16 array, dimension (LDT,N) The upper triangular matrix T. T is modified, but restored on exit. LDT (input) INTEGER The leading dimension of the array T. LDT >= max(1,N). VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors returned by ZHSEQR). On exit, if SIDE = 'L' or 'B', VL con- tains: if HOWMNY = 'A', the matrix Y of left eigenvectors of T; if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of T specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigen- values. If SIDE = 'R', VL is not referenced. LDVL (input) INTEGER The leading dimension of the array VL. LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other- wise. VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors returned by ZHSEQR). On exit, if SIDE = 'R' or 'B', VR con- tains: if HOWMNY = 'A', the matrix X of right eigenvectors of T; if HOWMNY = 'B', the matrix Q*X; if HOWMNY = 'S', the right eigenvectors of T specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigen- values. If SIDE = 'L', VR is not referenced. LDVR (input) INTEGER The leading dimension of the array VR. LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other- wise. MM (input) INTEGER The number of columns in the arrays VL and/or VR. MM >= M. M (output) INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected eigenvector occupies one column. WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value FURTHER DETAILS The algorithm used in this program is basically backward (forward) substitution, with scaling to make the the code robust against possible overflow. Each eigenvector is normalized so that the element of larg- est magnitude has magnitude 1; here the magnitude of a com- plex number (x,y) is taken to be |x| + |y|.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |