NAME ztgevc - compute some or all of the right and/or left gen- eralized eigenvectors of a pair of complex upper triangular matrices (A,B) SYNOPSIS SUBROUTINE ZTGEVC( SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO ) CHARACTER HOWMNY, SIDE INTEGER INFO, LDA, LDB, LDVL, LDVR, M, MM, N LOGICAL SELECT( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), VL( LDVL, * ), VR( LDVR, * ), WORK( * ) #include <sunperf.h> void ztgevc(char side, char howmny, int *select, int n, doublecomplex *za, int lda, doublecomplex *zb, int ldb, doublecomplex *vl, int ldvl, doublecomplex *vr, int ldvr, int mm, int *m, int *info) ; PURPOSE ZTGEVC computes some or all of the right and/or left gen- eralized eigenvectors of a pair of complex upper triangular matrices (A,B). The right generalized eigenvector x and the left generalized eigenvector y of (A,B) corresponding to a generalized eigen- value w are defined by: (A - wB) * x = 0 and y**H * (A - wB) = 0 where y**H denotes the conjugate tranpose of y. If an eigenvalue w is determined by zero diagonal elements of both A and B, a unit vector is returned as the corresponding eigenvector. If all eigenvectors are requested, the routine may either return the matrices X and/or Y of right or left eigenvectors of (A,B), or the products Z*X and/or Q*Y, where Z and Q are input unitary matrices. If (A,B) was obtained from the gen- eralized Schur factorization of an original pair of matrices (A0,B0) = (Q*A*Z**H,Q*B*Z**H), then Z*X and Q*Y are the matrices of right or left eigenvec- tors of A. ARGUMENTS SIDE (input) CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. HOWMNY (input) CHARACTER*1 = 'A': compute all right and/or left eigenvectors; = 'B': compute all right and/or left eigenvectors, and backtransform them using the input matrices supplied in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, specified by the logical array SELECT. SELECT (input) LOGICAL array, dimension (N) If HOWMNY='S', SELECT specifies the eigenvectors to be computed. If HOWMNY='A' or 'B', SELECT is not referenced. To select the eigenvector corresponding to the j-th eigenvalue, SELECT(j) must be set to .TRUE.. N (input) INTEGER The order of the matrices A and B. N >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The upper triangular matrix A. LDA (input) INTEGER The leading dimension of array A. LDA >= max(1,N). B (input) COMPLEX*16 array, dimension (LDB,N) The upper triangular matrix B. B must have real diagonal elements. LDB (input) INTEGER The leading dimension of array B. LDB >= max(1,N). VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the unitary matrix Q of left Schur vectors returned by ZHGEQZ). On exit, if SIDE = 'L' or 'B', VL con- tains: if HOWMNY = 'A', the matrix Y of left eigenvectors of (A,B); if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of (A,B) specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. If SIDE = 'R', VL is not referenced. LDVL (input) INTEGER The leading dimension of array VL. LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 other- wise. VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Q (usually the unitary matrix Z of right Schur vectors returned by ZHGEQZ). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of (A,B); if HOWMNY = 'B', the matrix Z*X; if HOWMNY = 'S', the right eigenvectors of (A,B) specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. If SIDE = 'L', VR is not referenced. LDVR (input) INTEGER The leading dimension of the array VR. LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other- wise. MM (input) INTEGER The leading dimension of the array VR. LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 other- wise. MM (input) INTEGER The number of columns in the arrays VL and/or VR. MM >= M. M (output) INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected eigenvector occupies one column. WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an ille- gal value.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |