NAME ztbrfs - provide error bounds and backward error estimates for the solution to a system of linear equations with a tri- angular band coefficient matrix SYNOPSIS SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) CHARACTER DIAG, TRANS, UPLO INTEGER INFO, KD, LDAB, LDB, LDX, N, NRHS DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) COMPLEX*16 AB( LDAB, * ), B( LDB, * ), WORK( * ), X( LDX, * ) #include <sunperf.h> void ztbrfs(char uplo, char trans, char diag, int n, int kd, int nrhs, doublecomplex *zab, int ldab, doublecom- plex *zb, int ldb, doublecomplex *zx, int ldx, double *ferr, double *berr, int *info) ; PURPOSE ZTBRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a tri- angular band coefficient matrix. The solution matrix X must be computed by ZTBTRS or some other means before entering this routine. ZTBRFS does not do iterative refinement because doing so cannot improve the backward error. ARGUMENTS UPLO (input) CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular. TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) DIAG (input) CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals or subdiagonals of the triangular band matrix A. KD >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AB (input) COMPLEX*16 array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first kd+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD+1. B (input) COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input) COMPLEX*16 array, dimension (LDX,NRHS) The solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solu- tion vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest ele- ment in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |