NAME
zstsv - compute the solution to a complex system of linear
equations A * X = B where A is a Hermitian tridiagonal
matrix
SYNOPSIS
SUBROUTINE ZSTSV( N, L, D, SUBL, IPIV, INFO )
INTEGER INFO, N
DOUBLE PRECISION D( * )
DOUBLE COMPLEX L( * ), SUBL( * )
#include <sunperf.h>
void zstsv(int n, doublecomplex *l, double *d, doublecomplex
*subl, int *info) ;
PURPOSE
ZSTSV computes the solution to a complex system of linear
equations A * X = B where A is a Hermitian tridiagonal
matrix.
ARGUMENTS
N (input) INTEGER
The order of the matrix A. N >= 0.
L (input/output) DOUBLE COMPLEX array, dimension (N)
On entry, the n-1 subdiagonal elements of the tri-
diagonal matrix A. On exit, part of the factori-
zation of A.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the n diagonal elements of the tridiago-
nal matrix A. On exit, the n diagonal elements of
the diagonal matrix D from the factorization of A.
SUBL (output) DOUBLE COMPLEX array, dimension (N)
On exit, part of the factorization of A.
IPIV (output) INTEGER array, dimension (N)
On exit, the pivot indices of the factorization.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, D(k,k) is exactly zero. The
factorization has been completed, but the block
diagonal matrix D is exactly singular and division
by zero will occur if it is used to solve a system
of equations.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |