NAME
zstedc - compute all eigenvalues and, optionally, eigenvec-
tors of a symmetric tridiagonal matrix using the divide and
conquer method
SYNOPSIS
SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK,
RWORK, LRWORK, IWORK, LIWORK, INFO )
CHARACTER COMPZ
INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E( * ), RWORK( * )
COMPLEX*16 WORK( * ), Z( LDZ, * )
#include <sunperf.h>
void zstedc(char compz, int n, double *d, double *e, doub-
lecomplex *zz, int ldz, int *info) ;
PURPOSE
ZSTEDC computes all eigenvalues and, optionally, eigenvec-
tors of a symmetric tridiagonal matrix using the divide and
conquer method. The eigenvectors of a full or band complex
Hermitian matrix can also be found if ZHETRD or ZHPTRD or
ZHBTRD has been used to reduce this matrix to tridiagonal
form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray
C-90, or Cray-2. It could conceivably fail on hexadecimal
or decimal machines without guard digits, but we know of
none. See DLAED3 for details.
ARGUMENTS
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'I': Compute eigenvectors of tridiagonal matrix
also.
= 'V': Compute eigenvectors of original Hermitian
matrix also. On entry, Z contains the unitary
matrix used to reduce the original matrix to tri-
diagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix.
N >= 0.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the diagonal elements of the tridiagonal
matrix. On exit, if INFO = 0, the eigenvalues in
ascending order.
E (input/output) DOUBLE PRECISION array, dimension
(N-1)
On entry, the subdiagonal elements of the tridiag-
onal matrix. On exit, E has been destroyed.
Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
On entry, if COMPZ = 'V', then Z contains the uni-
tary matrix used in the reduction to tridiagonal
form. On exit, if INFO = 0, then if COMPZ = 'V',
Z contains the orthonormal eigenvectors of the
original Hermitian matrix, and if COMPZ = 'I', Z
contains the orthonormal eigenvectors of the sym-
metric tridiagonal matrix. If COMPZ = 'N', then
Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) COMPLEX*16 array, dimension
(LWORK)
On exit, if LWORK > 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If COMPZ = 'N'
or 'I', or N <= 1, LWORK must be at least 1. If
COMPZ = 'V' and N > 1, LWORK must be at least N*N.
RWORK (workspace/output) DOUBLE PRECISION array,
dimension (LRWORK) On exit, if LRWORK > 0,
RWORK(1) returns the optimal LRWORK.
LRWORK (input) INTEGER
The dimension of the array RWORK. If COMPZ = 'N'
or N <= 1, LRWORK must be at least 1. If COMPZ =
'V' and N > 1, LRWORK must be at least 1 + 3*N +
2*N*lg N + 3*N**2 , where lg( N ) = smallest
integer k such that 2**k >= N. If COMPZ = 'I' and
N > 1, LRWORK must be at least 1 + 3*N + 2*N*lg N
+ 3*N**2 .
IWORK (workspace/output) INTEGER array, dimension
(LIWORK)
On exit, if LIWORK > 0, IWORK(1) returns the
optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. If COMPZ = 'N'
or N <= 1, LIWORK must be at least 1. If COMPZ =
'V' or N > 1, LIWORK must be at least 6 + 6*N +
5*N*lg N. If COMPZ = 'I' or N > 1, LIWORK must
be at least 2 + 5*N .
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: The algorithm failed to compute an eigen-
value while working on the submatrix lying in rows
and columns INFO/(N+1) through mod(INFO,N+1).
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |