The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zspfa (3)
  • >> zspfa (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zspfa - compute the UDU factorization of a symmetric  matrix
         A  in  packed  storage.   It  is typical to follow a call to
         xSPFA with a call to xSPSL to solve Ax = b or  to  xSPDI  to
         compute the determinant, inverse, and inertia of A.
    
    SYNOPSIS
         SUBROUTINE DSPFA (DA, N, IPIVOT, INFO)
    
         SUBROUTINE SSPFA (SA, N, IPIVOT, INFO)
    
         SUBROUTINE ZSPFA (ZA, N, IPIVOT, INFO)
    
         SUBROUTINE CSPFA (CA, N, IPIVOT, INFO)
    
    
    
         #include <sunperf.h>
    
         void dspfa(double *dap, int n, int *kpvt, int *info);
    
         void sspfa(float *sap, int n, int *kpvt, int *info);
    
         void zspfa(doublecomplex *zap, int n, int *kpvt, int *info);
    
         void cspfa(complex *cap, int n, int *kpvt, int *info);
    
    ARGUMENTS
         xA        On entry, the upper triangle of the matrix A.   On
                   exit, a UDU factorization of the matrix A.
    
         N         Order of the matrix A.  N >= 0.
    
         IPIVOT    On exit, a vector of pivot indices.
    
         INFO      On exit:
                   INFO = 0  Subroutine completed normally.
                   INFO > 0  Returns a value k if the kth pivot block
                   is  singular  to indicate that xSPSL or xSPDI will
                   divide by zero if called.
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           IDODET, IDOINR, IDOINV, JOB, LENGTA, N
               PARAMETER        (IDODET = 10)
               PARAMETER        (IDOINR = 100)
               PARAMETER        (IDOINV = 1)
               PARAMETER        (JOB = 111)
               PARAMETER        (N = 3)
               PARAMETER        (LENGTA = (N * N + N) / 2)
    
         C
               DOUBLE PRECISION  A(LENGTA), DET(2), WORK(N)
               INTEGER           INERT(3), INFO, IPIVOT(N)
         C
               EXTERNAL          DSPDI, DSPFA
         C
         C     Initialize the array A to store in packed symmetric format
         C     the matrix A shown below.
         C
         C         3  2  1
         C     A = 2  2  1
         C         1  1  1
         C
               DATA A / 3.0D0, 2.0D0, 2.0D0, 1.0D0, 1.0D0, 1.0D0 /
         C
               PRINT 1000
               PRINT 1010, A(1), A(2), A(4)
               PRINT 1010, A(2), A(3), A(5)
               PRINT 1010, A(4), A(5), A(6)
               CALL DSPFA (A, N, IPIVOT, INFO)
               IF (INFO .EQ. 0) THEN
                 CALL DSPDI (A, N, IPIVOT, DET, INERT, WORK, JOB)
                 PRINT 1020, DET(1) * (10.0D0 ** DET(2))
                 PRINT 1030, INERT
                 PRINT 1040
                 PRINT 1010, A(1), A(2), A(4)
                 PRINT 1010, A(2), A(3), A(5)
                 PRINT 1010, A(4), A(5), A(6)
               ELSE
                 PRINT 1050
               END IF
         C
          1000 FORMAT (1X, 'A:')
          1010 FORMAT (3(3X, F5.2))
          1020 FORMAT (/1X, 'Determinant of A: ', F7.3)
          1030 FORMAT (1X, 'Inertia of A: <', I1, ',', I1, ',', I1, '>')
          1040 FORMAT (/1X, 'A**(-1):')
          1050 FORMAT (1X, 'A is too ill-conditioned.')
         C
               END
    
    SAMPLE OUTPUT
          A:
             3.00    2.00    1.00
             2.00    2.00    1.00
             1.00    1.00    1.00
    
          Determinant of A:   1.000
          Inertia of A: <3,0,0>
    
          A**(-1):
             1.00   -1.00    0.00
    
            -1.00    2.00   -1.00
             0.00   -1.00    2.00
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру