NAME
zpoco - compute a Cholesky factorization and condition
number of a symmetric positive definite matrix A. If the
condition number is not needed then xPOFA is slightly fas-
ter. It is typical to follow a call to xPOCO with a call to
xPOSL to solve Ax = b or to xPODI to compute the determinant
and inverse of A.
SYNOPSIS
SUBROUTINE DPOCO (DA, LDA, N, DRCOND, DWORK, INFO)
SUBROUTINE SPOCO (SA, LDA, N, SRCOND, SWORK, INFO)
SUBROUTINE ZPOCO (ZA, LDA, N, DRCOND, ZWORK, INFO)
SUBROUTINE CPOCO (CA, LDA, N, SRCOND, CWORK, INFO)
#include <sunperf.h>
void dpoco(double *da, int lda, int n, double *drcond, int
*info) ;
void spoco(float *sa, int lda, int n, float *srcond, int
*info) ;
void zpoco(doublecomplex *za, int lda, int n, double
*drcond, int *info) ;
void cpoco(complex *ca, int lda, int n, float *srcond, int
*info) ;
ARGUMENTS
xA On entry, the upper triangle of the matrix A. On
exit, a Cholesky factorization of the matrix A.
The strict lower triangle of A is not referenced.
LDA Leading dimension of the array A as specified in a
dimension or type statement. LDA >= max(1,N).
N Order of the matrix A. N >= 0.
xRCOND On exit, an estimate of the reciprocal condition
number of A. 0.0 <= RCOND <= 1.0. As the value
of RCOND gets smaller, operations with A such as
solving Ax = b may become less stable. If RCOND
satisfies RCOND + 1.0 = 1.0 then A may be singular
to working precision.
xWORK Scratch array with a dimension of N.
INFO On exit:
INFO = 0 Subroutine completed normally.
INFO * 0 Returns a value k if the leading minor
of order k is not positive definite.
SAMPLE PROGRAM
PROGRAM TEST
IMPLICIT NONE
C
INTEGER LDA, N
PARAMETER (N = 4)
PARAMETER (LDA = N)
C
DOUBLE PRECISION A(LDA,N), B(N), RCOND, WORK(N)
INTEGER ICOL, INFO, IROW
C
EXTERNAL DPOCO, DPOSL
C
C Initialize the array A to store in symmetric storage mode
C the matrix A shown below. Initialize the array B to store
C the vector B shown below.
C
C 2 -1 0 0 40
C A = -1 2 -1 0 b = 30
C 0 -1 2 -1 20
C 0 0 -1 2 10
C
DATA A / 2.0D0, 3*8D8, -1.0D0, 2.0D0, 2*8D8, 0.0D0, -1.0D0,
$ 2.0D0, -1.0D0, 0.0D0, 0.0D0, -1.0D0, 2.0D0 /
DATA B / 4.0D0, 3.0D0, 2.0D0, 1.0D0 /
C
PRINT 1000
DO 100, IROW = 1, N
PRINT 1010, (A(ICOL,IROW), ICOL = 1, IROW),
$ (A(IROW,ICOL), ICOL = IROW + 1, N)
100 CONTINUE
PRINT 1020
PRINT 1010, ((A(IROW,ICOL), ICOL = 1, N), IROW = 1, N)
PRINT 1030
PRINT 1040, B
CALL DPOCO (A, LDA, N, RCOND, WORK, INFO)
IF (INFO .EQ. 0) THEN
IF ((RCOND + 1.0D0) .EQ. 1.0D0) THEN
PRINT 1070
END IF
CALL DPOSL (A, LDA, N, B)
PRINT 1050
PRINT 1040, B
PRINT 1060, RCOND
ELSE
PRINT 1080
END IF
C
1000 FORMAT (1X, 'A in full form:')
1010 FORMAT (4(3X, F7.3))
1020 FORMAT (/1X, 'A in symmetric form: (* in unused entries)')
1030 FORMAT (/1X, 'b:')
1040 FORMAT (3X, F7.3)
1050 FORMAT (/1X, 'A**(-1) * b:')
1060 FORMAT (/1X, 'Reciprocal condition number of A:', F5.1)
1070 FORMAT (1X, 'A may be singular to working precision.')
1080 FORMAT (1X, 'A is not positive definite.')
C
END
SAMPLE OUTPUT
A in full form:
2.000 -1.000 0.000 0.000
-1.000 2.000 -1.000 0.000
0.000 -1.000 2.000 -1.000
0.000 0.000 -1.000 2.000
A in symmetric form: (* in unused entries)
2.000 -1.000 0.000 0.000
******* 2.000 -1.000 0.000
******* ******* 2.000 -1.000
******* ******* -1.000 2.000
b:
4.000
3.000
2.000
1.000
A**(-1) * b:
6.000
8.000
7.000
4.000
Reciprocal condition number of A: 0.1
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |