NAME
zlagtm - perform a matrix-vector product of the form B :=
alpha * A * X + beta * B where A is a tridiagonal matrix of
order N, B and X are N by NRHS matrices, and alpha and beta
are real scalars, each of which may be zero, one, or minus
one
SYNOPSIS
SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX,
BETA, B, LDB )
CHARACTER TRANS
INTEGER LDB, LDX, N, NRHS
DOUBLE PRECISION ALPHA, BETA
COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, *
)
#include <sunperf.h>
void zlagtm(char trans, int n, int nrhs, double alpha, doub-
lecomplex *dl, doublecomplex *d, doublecomplex
*du, doublecomplex *zx, int ldx, double dbeta,
doublecomplex *zb, int ldb) ;
PURPOSE
ZLAGTM performs a matrix-vector product of the form
ARGUMENTS
TRANS (input) CHARACTER
Specifies the operation applied to A. = 'N': No
transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A**T * X + beta
* B
= 'C': Conjugate transpose, B := alpha * A**H * X
+ beta * B
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices X and B.
ALPHA (input) DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.;
otherwise, it is assumed to be 0.
DL (input) COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) COMPLEX*16 array, dimension (N)
The diagonal elements of T.
DU (input) COMPLEX*16 array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) COMPLEX*16 array, dimension (LDX,NRHS)
The N by NRHS matrix X. LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(N,1).
BETA (input) DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.;
otherwise, it is assumed to be 1.
B (input/output) COMPLEX*16 array, dimension
(LDB,NRHS)
On entry, the N by NRHS matrix B. On exit, B is
overwritten by the matrix expression B := alpha *
A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(N,1).
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |