NAME zlagtm - perform a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be zero, one, or minus one SYNOPSIS SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB ) CHARACTER TRANS INTEGER LDB, LDX, N, NRHS DOUBLE PRECISION ALPHA, BETA COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * ) #include <sunperf.h> void zlagtm(char trans, int n, int nrhs, double alpha, doub- lecomplex *dl, doublecomplex *d, doublecomplex *du, doublecomplex *zx, int ldx, double dbeta, doublecomplex *zb, int ldb) ; PURPOSE ZLAGTM performs a matrix-vector product of the form ARGUMENTS TRANS (input) CHARACTER Specifies the operation applied to A. = 'N': No transpose, B := alpha * A * X + beta * B = 'T': Transpose, B := alpha * A**T * X + beta * B = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. ALPHA (input) DOUBLE PRECISION The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, it is assumed to be 0. DL (input) COMPLEX*16 array, dimension (N-1) The (n-1) sub-diagonal elements of T. D (input) COMPLEX*16 array, dimension (N) The diagonal elements of T. DU (input) COMPLEX*16 array, dimension (N-1) The (n-1) super-diagonal elements of T. X (input) COMPLEX*16 array, dimension (LDX,NRHS) The N by NRHS matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(N,1). BETA (input) DOUBLE PRECISION The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is assumed to be 1. B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N by NRHS matrix B. On exit, B is overwritten by the matrix expression B := alpha * A * X + beta * B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(N,1).
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |