NAME
zlaed0 - the divide and conquer method, ZLAED0 computes all
eigenvalues of a symmetric tridiagonal matrix which is one
diagonal block of those from reducing a dense or band Hermi-
tian matrix and corresponding eigenvectors of the dense or
band matrix
SYNOPSIS
SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,
RWORK, IWORK, INFO )
INTEGER INFO, LDQ, LDQS, N, QSIZ
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E( * ), RWORK( * )
COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * )
#include <sunperf.h>
void zlaed0(int qsiz, int n, double *d, double *e, doub-
lecomplex *q, int ldq, doublecomplex *qstore, int
ldqs, int *info) ;
PURPOSE
Using the divide and conquer method, ZLAED0 computes all
eigenvalues of a symmetric tridiagonal matrix which is one
diagonal block of those from reducing a dense or band Hermi-
tian matrix and corresponding eigenvectors of the dense or
band matrix.
ARGUMENTS
QSIZ (input) INTEGER
The dimension of the unitary matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if
ICOMPQ = 1.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix.
N >= 0.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the diagonal elements of the tridiagonal
matrix. On exit, the eigenvalues in ascending
order.
E (input/output) DOUBLE PRECISION array, dimension
(N-1)
On entry, the off-diagonal elements of the tridi-
agonal matrix. On exit, E has been destroyed.
Q (input/output) COMPLEX*16 array, dimension (LDQ,N)
On entry, Q must contain an QSIZ x N matrix whose
columns unitarily orthonormal. It is a part of the
unitary matrix that reduces the full dense Hermi-
tian matrix to a (reducible) symmetric tridiagonal
matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >=
max(1,N).
IWORK (workspace) INTEGER array,
the dimension of IWORK must be at least 6 + 6*N +
5*N*lg N ( lg( N ) = smallest integer k such that
2^k >= N )
RWORK (workspace) DOUBLE PRECISION array,
dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N )
= smallest integer k such that 2^k >= N )
QSTORE (workspace) COMPLEX*16 array, dimension
(LDQS, N) Used to store parts of the eigenvector
matrix when the updating matrix multiplies take
place.
LDQS (input) INTEGER
The leading dimension of the array QSTORE. LDQS
>= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: The algorithm failed to compute an eigen-
value while working on the submatrix lying in rows
and columns INFO/(N+1) through mod(INFO,N+1).
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |