NAME
zgtsv - solve the equation A*X = B,
SYNOPSIS
SUBROUTINE ZGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
INTEGER INFO, LDB, N, NRHS
COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * )
#include <sunperf.h>
void zgtsv(int n, int nrhs, doublecomplex *dl, doublecomplex
*d, doublecomplex *du, doublecomplex *zb, int ldb,
int *info) ;
PURPOSE
ZGTSV solves the equation
where A is an N-by-N tridiagonal matrix, by Gaussian elimi-
nation with partial pivoting.
Note that the equation A'*X = B may be solved by inter-
changing the order of the arguments DU and DL.
ARGUMENTS
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.
DL (input/output) COMPLEX*16 array, dimension (N-1)
On entry, DL must contain the (n-1) subdiagonal
elements of A. On exit, DL is overwritten by the
(n-2) elements of the second superdiagonal of the
upper triangular matrix U from the LU factoriza-
tion of A, in DL(1), ..., DL(n-2).
D (input/output) COMPLEX*16 array, dimension (N)
On entry, D must contain the diagonal elements of
A. On exit, D is overwritten by the n diagonal
elements of U.
DU (input/output) COMPLEX*16 array, dimension (N-1)
On entry, DU must contain the (n-1) superdiagonal
elements of A. On exit, DU is overwritten by the
(n-1) elements of the first superdiagonal of U.
B (input/output) COMPLEX*16 array, dimension
(LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution
matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, U(i,i) is exactly zero, and the
solution has not been computed. The factorization
has not been completed unless i = N.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |