NAME
zgtrfs - improve the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and
provides error bounds and backward error estimates for the
solution
SYNOPSIS
SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK,
RWORK, INFO )
CHARACTER TRANS
INTEGER INFO, LDB, LDX, N, NRHS
INTEGER IPIV( * )
DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
COMPLEX*16 B( LDB, * ), D( * ), DF( * ), DL( * ), DLF( * ),
DU( * ), DU2( * ), DUF( * ), WORK( * ), X( LDX, *
)
#include <sunperf.h>
void zgtrfs(char trans, int n, int nrhs, doublecomplex *dl,
doublecomplex *d, doublecomplex *du, doublecomplex
*dlf, doublecomplex *df, doublecomplex *duf, doub-
lecomplex *du2, int *ipivot, doublecomplex *zb,
int ldb, doublecomplex *zx, int ldx, double *ferr,
double *berr, int *info) ;
PURPOSE
ZGTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and
provides error bounds and backward error estimates for the
solution.
ARGUMENTS
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.
DL (input) COMPLEX*16 array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D (input) COMPLEX*16 array, dimension (N)
The diagonal elements of A.
DU (input) COMPLEX*16 array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF (input) COMPLEX*16 array, dimension (N-1)
The (n-1) multipliers that define the matrix L
from the LU factorization of A as computed by
ZGTTRF.
DF (input) COMPLEX*16 array, dimension (N)
The n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
DUF (input) COMPLEX*16 array, dimension (N-1)
The (n-1) elements of the first superdiagonal of
U.
DU2 (input) COMPLEX*16 array, dimension (N-2)
The (n-2) elements of the second superdiagonal of
U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the
matrix was interchanged with row IPIV(i). IPIV(i)
will always be either i or i+1; IPIV(i) = i indi-
cates a row interchange was not required.
B (input) COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
X (input/output) COMPLEX*16 array, dimension
(LDX,NRHS)
On entry, the solution matrix X, as computed by
ZGTTRS. On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solu-
tion vector X(j) (the j-th column of the solution
matrix X). If XTRUE is the true solution
corresponding to X(j), FERR(j) is an estimated
upper bound for the magnitude of the largest ele-
ment in (X(j) - XTRUE) divided by the magnitude of
the largest element in X(j). The estimate is as
reliable as the estimate for RCOND, and is almost
always a slight overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each
solution vector X(j) (i.e., the smallest relative
change in any element of A or B that makes X(j) an
exact solution).
WORK (workspace) COMPLEX*16 array, dimension (2*N)
RWORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |