NAME zgglse - solve the linear equality-constrained least squares (LSE) problem SYNOPSIS SUBROUTINE ZGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO ) INTEGER INFO, LDA, LDB, LWORK, M, N, P COMPLEX*16 A( LDA, * ), B( LDB, * ), C( * ), D( * ), WORK( * ), X( * ) #include <sunperf.h> void zgglse(int m, int n, int p, doublecomplex *za, int lda, doublecomplex *zb, int ldb, doublecomplex *zc, doublecomplex *d, doublecomplex *zx, int *info) ; PURPOSE ZGGLSE solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( ( A ) ) = N. ( ( B ) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a GRQ factorization of the matrices B and A. ARGUMENTS M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. P (input) INTEGER The number of rows of the matrix B. 0 <= P <= N <= M+P. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A is des- troyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) COMPLEX*16 array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B is des- troyed. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,P). C (input/output) COMPLEX*16 array, dimension (M) On entry, C contains the right hand side vector for the least squares part of the LSE problem. On exit, the residual sum of squares for the solution is given by the sum of squares of elements N-P+1 to M of vector C. D (input/output) COMPLEX*16 array, dimension (P) On entry, D contains the right hand side vector for the constrained equation. On exit, D is des- troyed. X (output) COMPLEX*16 array, dimension (N) On exit, X is the solution of the LSE problem. WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,M+N+P). For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, where NB is an upper bound for the optimal blocksizes for ZGEQRF, CGERQF, ZUNMQR and CUNMRQ. INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an ille- gal value.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |