NAME
zggglm - solve a general Gauss-Markov linear model (GLM)
problem
SYNOPSIS
SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK,
LWORK, INFO )
INTEGER INFO, LDA, LDB, LWORK, M, N, P
COMPLEX*16 A( LDA, * ), B( LDB, * ), D( * ), WORK( * ), X( *
), Y( * )
#include <sunperf.h>
void zggglm(int n, int m, int p, doublecomplex *za, int lda,
doublecomplex *zb, int ldb, doublecomplex *d,
doublecomplex *zx, doublecomplex *zy, int *info) ;
PURPOSE
ZGGGLM solves a general Gauss-Markov linear model (GLM)
problem:
minimize || y ||_2 subject to d = A*x + B*y
x
where A is an N-by-M matrix, B is an N-by-P matrix, and d is
a given N-vector. It is assumed that M <= N <= M+P, and
rank(A) = M and rank( A B ) = N.
Under these assumptions, the constrained equation is always
consistent, and there is a unique solution x and a minimal
2-norm solution y, which is obtained using a generalized QR
factorization of A and B.
In particular, if matrix B is square nonsingular, then the
problem GLM is equivalent to the following weighted linear
least squares problem
minimize || inv(B)*(d-A*x) ||_2
x
where inv(B) denotes the inverse of B.
ARGUMENTS
N (input) INTEGER
The number of rows of the matrices A and B. N >=
0.
M (input) INTEGER
The number of columns of the matrix A. 0 <= M <=
N.
P (input) INTEGER
The number of columns of the matrix B. P >= N-M.
A (input/output) COMPLEX*16 array, dimension (LDA,M)
On entry, the N-by-M matrix A. On exit, A is des-
troyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,N).
B (input/output) COMPLEX*16 array, dimension (LDB,P)
On entry, the N-by-P matrix B. On exit, B is des-
troyed.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
D (input/output) COMPLEX*16 array, dimension (N)
On entry, D is the left hand side of the GLM equa-
tion. On exit, D is destroyed.
X (output) COMPLEX*16 array, dimension (M)
Y (output) COMPLEX*16 array, dimension (P)
On exit, X and Y are the solutions of the GLM
problem.
WORK (workspace/output) COMPLEX*16 array, dimension
(LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >=
max(1,N+M+P). For optimum performance, LWORK >=
M+min(N,P)+max(N,P)*NB, where NB is an upper bound
for the optimal blocksizes for ZGEQRF, CGERQF,
ZUNMQR and CUNMRQ.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |