NAME
zgelqf - compute an LQ factorization of a complex M-by-N
matrix A
SYNOPSIS
SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
INTEGER INFO, LDA, LWORK, M, N
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( LWORK )
#include <sunperf.h>
void zgelqf(int m, int n, doublecomplex *za, int lda, doub-
lecomplex *tau, int *info) ;
PURPOSE
ZGELQF computes an LQ factorization of a complex M-by-N
matrix A: A = L * Q.
ARGUMENTS
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A. On exit, the ele-
ments on and below the diagonal of the array con-
tain the m-by-min(m,n) lower trapezoidal matrix L
(L is lower triangular if m <= n); the elements
above the diagonal, with the array TAU, represent
the unitary matrix Q as a product of elementary
reflectors (see Further Details). LDA (input)
INTEGER The leading dimension of the array A. LDA
>= max(1,M).
TAU (output) COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors
(see Further Details).
WORK (workspace/output) COMPLEX*16 array, dimension
(LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >=
max(1,M). For optimum performance LWORK >= M*NB,
where NB is the optimal blocksize.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
FURTHER DETAILS
The matrix Q is represented as a product of elementary
reflectors
Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a complex scalar, and v is a complex vector
with v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on
exit in A(i,i+1:n), and tau in TAU(i).
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |