The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zgeev (3)
  • >> zgeev (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zgeev - compute for an N-by-N complex nonsymmetric matrix A,
         the  eigenvalues  and,  optionally,  the  left  and/or right
         eigenvectors
    
    SYNOPSIS
         SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL,  VR,
                   LDVR, WORK, LWORK, RWORK, INFO )
    
         CHARACTER JOBVL, JOBVR
    
         INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
    
         DOUBLE PRECISION RWORK( * )
    
         COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),  W(  *
                   ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void zgeev(char jobvl, char jobvr, int n, doublecomplex *za,
                   int  lda, doublecomplex *w, doublecomplex *vl, int
                   ldvl, doublecomplex *vr, int ldvr, int *info) ;
    
    PURPOSE
         ZGEEV computes for an N-by-N complex nonsymmetric matrix  A,
         the  eigenvalues  and,  optionally,  the  left  and/or right
         eigenvectors.
    
         The right eigenvector v(j) of A satisfies
                          A * v(j) = lambda(j) * v(j)
         where lambda(j) is its eigenvalue.
         The left eigenvector u(j) of A satisfies
                       u(j)**H * A = lambda(j) * u(j)**H
         where u(j)**H denotes the conjugate transpose of u(j).
    
         The computed eigenvectors are normalized to  have  Euclidean
         norm equal to 1 and largest component real.
    
    
    ARGUMENTS
         JOBVL     (input) CHARACTER*1
                   = 'N': left eigenvectors of A are not computed;
                   = 'V': left eigenvectors of are computed.
    
         JOBVR     (input) CHARACTER*1
                   = 'N': right eigenvectors of A are not computed;
                   = 'V': right eigenvectors of A are computed.
    
         N         (input) INTEGER
                   The order of the matrix A. N >= 0.
    
         A         (input/output) COMPLEX*16 array, dimension (LDA,N)
                   On entry, the N-by-N matrix A.   On  exit,  A  has
                   been overwritten.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         W         (output) COMPLEX*16 array, dimension (N)
                   W contains the computed eigenvalues.
    
         VL        (output) COMPLEX*16 array, dimension (LDVL,N)
                   If JOBVL = 'V', the  left  eigenvectors  u(j)  are
                   stored  one after another in the columns of VL, in
                   the same order as their eigenvalues.  If  JOBVL  =
                   'N',  VL  is  not referenced.  u(j) = VL(:,j), the
                   j-th column of VL.
    
         LDVL      (input) INTEGER
                   The leading dimension of the array VL.  LDVL >= 1;
                   if JOBVL = 'V', LDVL >= N.
    
         VR        (output) COMPLEX*16 array, dimension (LDVR,N)
                   If JOBVR = 'V', the right  eigenvectors  v(j)  are
                   stored  one after another in the columns of VR, in
                   the same order as their eigenvalues.  If  JOBVR  =
                   'N',  VR  is  not referenced.  v(j) = VR(:,j), the
                   j-th column of VR.
    
         LDVR      (input) INTEGER
                   The leading dimension of the array VR.  LDVR >= 1;
                   if JOBVR = 'V', LDVR >= N.
    
         WORK      (workspace/output)  COMPLEX*16  array,   dimension
                   (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The  dimension  of  the  array  WORK.   LWORK   >=
                   max(1,2*N).  For good performance, LWORK must gen-
                   erally be larger.
    
         RWORK     (workspace)  DOUBLE  PRECISION  array,   dimension
                   (2*N)
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  if INFO = i, the QR algorithm failed to com-
                   pute all the eigenvalues, and no eigenvectors have
                   been computed; elements and  i+1:N  of  W  contain
                   eigenvalues which have converged.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру