The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zgeesx (3)
  • >> zgeesx (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zgeesx - compute for an N-by-N complex  nonsymmetric  matrix
         A,  the  eigenvalues, the Schur form T, and, optionally, the
         matrix of Schur vectors Z
    
    SYNOPSIS
         SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE,  N,  A,  LDA,
                   SDIM,  W,  VS,  LDVS, RCONDE, RCONDV, WORK, LWORK,
                   RWORK, BWORK, INFO )
    
         CHARACTER JOBVS, SENSE, SORT
    
         INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
    
         DOUBLE PRECISION RCONDE, RCONDV
    
         LOGICAL BWORK( * )
    
         DOUBLE PRECISION RWORK( * )
    
         COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
    
         LOGICAL SELECT
    
         EXTERNAL SELECT
    
    
    
         #include <sunperf.h>
    
         void zgeesx(char jobvs, char  sort,  int  (*select)(),  char
                   sense,  int  n,  doublecomplex  *za,  int lda, int
                   *sdim, doublecomplex * w, doublecomplex  *vs,  int
                   ldvs, double *rconde, double *rcondv, int *info) ;
    
    PURPOSE
         ZGEESX computes for an N-by-N complex nonsymmetric matrix A,
         the  eigenvalues,  the  Schur  form  T, and, optionally, the
         matrix of Schur vectors Z.  This gives the Schur  factoriza-
         tion A = Z*T*(Z**H).
    
         Optionally, it also orders the eigenvalues on  the  diagonal
         of  the  Schur  form so that selected eigenvalues are at the
         top left; computes a reciprocal  condition  number  for  the
         average of the selected eigenvalues (RCONDE); and computes a
         reciprocal condition number for the right invariant subspace
         corresponding  to  the  selected  eigenvalues (RCONDV).  The
         leading columns of Z form  an  orthonormal  basis  for  this
         invariant subspace.
    
         For further explanation of the reciprocal condition  numbers
         RCONDE  and  RCONDV,  see  Section 4.10 of the LAPACK Users'
         Guide (where these quantities are called s and  sep  respec-
         tively).
    
         A complex matrix is in Schur form if it is upper triangular.
    
    
    ARGUMENTS
         JOBVS     (input) CHARACTER*1
                   = 'N': Schur vectors are not computed;
                   = 'V': Schur vectors are computed.
    
         SORT      (input) CHARACTER*1
                   Specifies whether or not to order the  eigenvalues
                   on  the diagonal of the Schur form.  = 'N': Eigen-
                   values are not ordered;
                   = 'S': Eigenvalues are ordered (see SELECT).
    
         SELECT    (input) LOGICAL FUNCTION of one  COMPLEX*16  argu-
                   ment
                   SELECT must be declared EXTERNAL  in  the  calling
                   subroutine.   If  SORT  =  'S',  SELECT is used to
                   select eigenvalues to order to the top left of the
                   Schur  form.   If SORT = 'N', SELECT is not refer-
                   enced.   An  eigenvalue  W(j)   is   selected   if
                   SELECT(W(j)) is true.
    
         SENSE     (input) CHARACTER*1
                   Determines which reciprocal condition numbers  are
                   computed.  = 'N': None are computed;
                   = 'E': Computed for  average  of  selected  eigen-
                   values only;
                   = 'V': Computed for selected right invariant  sub-
                   space only;
                   = 'B': Computed for both.  If SENSE = 'E', 'V'  or
                   'B', SORT must equal 'S'.
    
         N         (input) INTEGER
                   The order of the matrix A. N >= 0.
    
         A         (input/output) COMPLEX*16 array,  dimension  (LDA,
                   N)
                   On entry, the N-by-N matrix  A.   On  exit,  A  is
                   overwritten by its Schur form T.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         SDIM      (output) INTEGER
                   If SORT = 'N', SDIM = 0.  If SORT =  'S',  SDIM  =
                   number of eigenvalues for which SELECT is true.
    
         W         (output) COMPLEX*16 array, dimension (N)
                   W contains the computed eigenvalues, in  the  same
                   order that they appear on the diagonal of the out-
                   put Schur form T.
    
         VS        (output) COMPLEX*16 array, dimension (LDVS,N)
                   If JOBVS = 'V', VS contains the unitary  matrix  Z
                   of  Schur  vectors.   If  JOBVS  =  'N', VS is not
                   referenced.
    
         LDVS      (input) INTEGER
                   The leading dimension of the array VS.  LDVS >= 1,
                   and if JOBVS = 'V', LDVS >= N.
    
         RCONDE    (output) DOUBLE PRECISION
                   If  SENSE  =  'E'  or  'B',  RCONDE  contains  the
                   reciprocal condition number for the average of the
                   selected eigenvalues.  Not referenced if  SENSE  =
                   'N' or 'V'.
    
         RCONDV    (output) DOUBLE PRECISION
                   If  SENSE  =  'V'  or  'B',  RCONDV  contains  the
                   reciprocal condition number for the selected right
                   invariant subspace.  Not referenced if SENSE = 'N'
                   or 'E'.
    
         WORK      (workspace/output)  COMPLEX*16  array,   dimension
                   (LWORK)
                   On exit, if INFO = 0, WORK(1) returns the  optimal
                   LWORK.
    
         LWORK     (input) INTEGER
                   The  dimension  of  the  array  WORK.   LWORK   >=
                   max(1,2*N).   Also,  if SENSE = 'E' or 'V' or 'B',
                   LWORK >= 2*SDIM*(N-SDIM), where SDIM is the number
                   of  selected eigenvalues computed by this routine.
                   Note that 2*SDIM*(N-SDIM) <= N*N/2.  For good per-
                   formance, LWORK must generally be larger.
    
         RWORK     (workspace) DOUBLE PRECISION array, dimension (N)
    
         BWORK     (workspace) LOGICAL array, dimension (N)
                   Not referenced if SORT = 'N'.
    
         INFO      (output) INTEGER
                   = 0: successful exit
                   < 0: if INFO = -i, the i-th argument had an  ille-
                   gal value.
                   > 0: if INFO = i, and i is
                   <= N: the QR algorithm failed to compute all the
                   eigenvalues; elements 1:ILO-1 and i+1:N of W  con-
                   tain  those  eigenvalues  which have converged; if
                   JOBVS = 'V', VS contains the transformation  which
                   reduces  A  to its partially converged Schur form.
                   = N+1: the  eigenvalues  could  not  be  reordered
                   because   some   eigenvalues  were  too  close  to
                   separate (the problem is very ill-conditioned);  =
                   N+2:  after reordering, roundoff changed values of
                   some complex eigenvalues so  that  leading  eigen-
                   values   in  the  Schur  form  no  longer  satisfy
                   SELECT=.TRUE.  This could also be caused by under-
                   flow due to scaling.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру