The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

zgbsl (3)
  • >> zgbsl (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         zgbsl - solve the linear system Ax = b for  a  matrix  A  in
         banded  storage,  which  has  been  LU-factored  by xGBCO or
         xGBFA, and vectors b and x.
    
    SYNOPSIS
         SUBROUTINE DGBSL (DA, LDA, N, NSUB, NSUPER, IPIVOT, DB, JOB)
    
         SUBROUTINE SGBSL (SA, LDA, N, NSUB, NSUPER, IPIVOT, SB, JOB)
    
         SUBROUTINE ZGBSL (ZA, LDA, N, NSUB, NSUPER, IPIVOT, ZB, JOB)
    
         SUBROUTINE CGBSL (CA, LDA, N, NSUB, NSUPER, IPIVOT, CB, JOB)
    
    
    
         #include <sunperf.h>
    
         void dgbsl(double *abd, int lda, int n, int ml, int mu,  int
                   *ipivot, double *db, int job) ;
    
         void sgbsl(float *abd, int lda, int n, int ml, int  mu,  int
                   *ipivot, float *sb, int job) ;
    
         void zgbsl(doublecomplex *abd, int lda, int n, int  ml,  int
                   mu, int *ipivot, doublecomplex *zb, int job) ;
    
         void cgbsl(complex *abd, int lda, int n, int ml, int mu, int
                   *ipivot, complex *cb, int job) ;
    
    ARGUMENTS
         xA        LU factorization of the matrix A, as  computed  by
                   xGBCO or xGBFA.
    
         LDA       Leading dimension of the array A as specified in a
                   dimension  or  type  statement.  LDA >= 2 * NSUB +
                   NSUPER + 1.
    
         N         Order of the matrix A.  N >= 0.
    
         NSUB      Number of subdiagonals of A.  N-1 >= NSUB >= 0 but
                   if N = 0 then NSUB = 0.
    
         NSUPER    Number of superdiagonals of A.  N-1 >= NSUPER >= 0
                   but if N = 0 then NSUPER = 0.
    
         IPIVOT    Pivot vector as computed by xGBCO or xGBFA.
    
         xB        On entry, the right-hand side vector b.  On  exit,
                   the solution vector x.
    
         JOB       Determines which operation  this  subroutine  will
                   perform:
                        0    solve the system Ax = b
                        not 0     solve the linear  system  AHx  =  b
                             Note that ATx = AHx for real matrices.
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           IAXEQB, LDA, LDAB, N, NDIAG, NSUB, NSUPER
               PARAMETER        (IAXEQB = 0)
               PARAMETER        (N = 4)
               PARAMETER        (LDA = N)
               PARAMETER        (NSUB = 1)
               PARAMETER        (NSUPER = 1)
               PARAMETER        (NDIAG = NSUB + 1 + NSUPER)
               PARAMETER        (LDAB = 2 * NSUB + 1 + NSUPER)
         C
               DOUBLE PRECISION  AB(LDAB,N), AG(LDA,N), B(N), RCOND, WORK(N)
               INTEGER           ICOL, IPIVOT(N), IROW, IROWB, I1, I2, JOB
         C
               EXTERNAL          DGBCO, DGBSL
               INTRINSIC         MAX0, MIN0
         C
         C     Initialize the array AG to store the 4x4 matrix A with one
         C     subdiagonal and one superdiagonal shown below.  Initialize
         C     the array B to store the vector b shown below.
         C
         C           2  -1                5
         C     AG = -1   2  -1        b = 5
         C              -1   2  -1        5
         C                  -1   2        5
         C
               DATA AB / 16*8D8 /
               DATA AG /  2.0D0, -1.0D0,  2*0D0, -1.0D0,  2.0D0, -1.0D0,
              $           2*0D0, -1.0D0,  2.0D0, -1.0D0,  2*0D0, -1.0D0,
              $           2.0D0 /
               DATA B / N*5.0D0 /
         C
         C     Copy the matrix A from the array AG to the array AB.  The
         C     matrix is stored in general storage mode in AG and it will
         C     be stored in banded storage mode in AB.  The code to copy
         C     from general to banded storage mode is taken from the
         C     comment block in the original DGBFA by Cleve Moler.
         C
               DO 10, ICOL = 1, N
                 I1 = MAX0 (1, ICOL - NSUPER)
                 I2 = MIN0 (N, ICOL + NSUB)
                 DO 10, IROW = I1, I2
                   IROWB = IROW - ICOL + NDIAG
                   AB(IROWB,ICOL) = AG(IROW,ICOL)
            10   CONTINUE
            20 CONTINUE
         C
         C     Print the initial values of the arrays.
         C
               PRINT 1000
               PRINT 1010, ((AG(IROW,ICOL), ICOL = 1, N), IROW = 1, N)
               PRINT 1020
               PRINT 1010, ((AB(IROW,ICOL), ICOL = 1, N),
              $             IROW = 2 * NSUB, 2 * NSUB + 1 + NSUPER)
               PRINT 1030
               PRINT 1040, B
         C
         C     Factor the matrix in banded form.
         C
               CALL DGBCO (AB, LDA, N, NSUB, NSUPER, IPIVOT, RCOND, WORK)
               PRINT 1050, RCOND
               IF ((RCOND + 1.0D0) .EQ. 1.0D0) THEN
                 PRINT 1070
               END IF
               JOB = IAXEQB
               CALL DGBSL (AB, LDA, N, NSUB, NSUPER, IPIVOT, B, JOB)
               PRINT 1060
               PRINT 1040, B
         C
          1000 FORMAT (1X, 'A in full form:')
          1010 FORMAT (4(3X, F4.1))
          1020 FORMAT (/1X, 'A in banded form:  (* in unused elements)')
          1030 FORMAT (/1X, 'b:')
          1040 FORMAT (3X, F4.1)
          1050 FORMAT (/1X, 'Reciprocal of the condition number: ', F5.2)
          1060 FORMAT (/1X, 'A**(-1) * b:')
          1070 FORMAT (1X, 'A may be singular to working precision.')
         C
               END
    
    SAMPLE OUTPUT
          A in full form:
             2.0   -1.0    0.0    0.0
            -1.0    2.0   -1.0    0.0
             0.0   -1.0    2.0   -1.0
             0.0    0.0   -1.0    2.0
    
          A in banded form:  (* in unused elements)
            ****   -1.0   -1.0   -1.0
             2.0    2.0    2.0    2.0
            -1.0   -1.0   -1.0   ****
    
          b:
             5.0
             5.0
             5.0
             5.0
    
          Reciprocal of the condition number:  0.08
    
          A**(-1) * b:
            10.0
            15.0
            15.0
            10.0
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру