The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

trig_sun (3)
  • >> trig_sun (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         trig_sun, sincos, sind, cosd,  tand,  asind,  acosd,  atand,
         atan2d, sincosd, sinp, cosp, tanp, asinp, acosp, atanp, sin-
         cosp, sinpi, cospi, tanpi, asinpi, acospi, atanpi,  atan2pi,
         sincospi - more trigonometric functions
    
    SYNOPSIS
         cc [ flag ... ] file ...  -lsunmath -lm [ library ... ]
    
         #include <sunmath.h>
    
         void sincos(double x, double *s, double *c);
    
         double sind(double x);
    
         double cosd(double x);
    
         double tand(double x);
    
         double asind(double x);
    
         double acosd(double x);
    
         double atand(double x);
    
         double atan2d(double y, double x);
    
         void sincosd(double x, double *s, double *c);
    
         double sinpi(double x);
    
         double cospi(double x);
    
         double tanpi(double x);
    
         double asinpi(double x);
    
         double acospi(double x);
    
         double atanpi(double x);
    
         double atan2pi(double y, double x);
    
         void sincospi(double x, double *s, double *c);
    
         double sinp(double x);
    
         double cosp(double x);
    
         double tanp(double x);
    
    
         double asinp(double x);
    
         double acosp(double x);
    
         double atanp(double x);
    
         void sincosp(double x, double *s, double *c);
    
    DESCRIPTION
         sincos(x,s,c) allows simultaneous computation of  *s:=sin(x)
         and *c:=cos(x).
    
         sind(x), cosd(x), and tand(x) return trigonometric functions
         of   degree   arguments.    sind(x):=   sin(x*n/180).    The
         corresponding   inverse   functions    compute    asind(x):=
         asin(x)*180/n.  Similarly atan2d(y,x):= atan2(y,x)*180/n.
    
         sinpi(x),  cospi(x),  and  tanpi(x)  avoid   range-reduction
         issues  because their definition sinpi(x):= sin(n*x) permits
         range reduction that is  fast  and  exact  for  all  x.  The
         corresponding    inverse   functions   compute   asinpi(x):=
         asin(x)/n.  Similarly atan2pi(y,x):= atan2(y,x)/n.
    
         sinp(x), cosp(x), and tanp(x) use PI/2, the double precision
         approximation  to  n/2,  in  the  argument reduction step to
         reduce arguments exceeding PI/4 in magnitude  to  the  range
         -PI/4  to PI/4 . The argument reduction step is accomplished
         by the fmod function; thus it is much faster than using  the
         true  value  of  n.   The  relation  between sinp and sin is
         sinp(x):= sin(x*n/PI).  The corresponding inverse  functions
         asinp(x):=  asin(x)*PI/n.  Since PI/n is close to 1, we sim-
         ply return  asin(x).   The  same  applies  to  acosp(x)  and
         atanp(x).
    
    SEE ALSO
         asin(3M), acos(3M), atan(3M), atan2(3M),  cos(3M),  sin(3M),
         tan(3M).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру