The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

ssyevd (3)
  • >> ssyevd (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         ssyevd - compute all eigenvalues and, optionally,  eigenvec-
         tors of a real symmetric matrix A
    
    SYNOPSIS
         SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA,  W,  WORK,  LWORK,
                   IWORK, LIWORK, INFO )
    
         CHARACTER JOBZ, UPLO
    
         INTEGER INFO, LDA, LIWORK, LWORK, N
    
         INTEGER IWORK( * )
    
         REAL A( LDA, * ), W( * ), WORK( * )
    
    
    
         #include <sunperf.h>
    
         void ssyevd(char jobz, char uplo, int n, float *sa, int lda,
                   float *w, int *info) ;
    
    PURPOSE
         SSYEVD computes all eigenvalues and,  optionally,  eigenvec-
         tors  of  a  real  symmetric  matrix  A. If eigenvectors are
         desired, it uses a divide and conquer algorithm.
    
         The divide and conquer algorithm makes very mild assumptions
         about  floating  point  arithmetic. It will work on machines
         with a guard digit  in  add/subtract,  or  on  those  binary
         machines  without  guard digits which subtract like the Cray
         X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could  conceivably
         fail  on  hexadecimal  or  decimal  machines  without  guard
         digits, but we know of none.
    
    
    ARGUMENTS
         JOBZ      (input) CHARACTER*1
                   = 'N':  Compute eigenvalues only;
                   = 'V':  Compute eigenvalues and eigenvectors.
    
         UPLO      (input) CHARACTER*1
                   = 'U':  Upper triangle of A is stored;
                   = 'L':  Lower triangle of A is stored.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         A         (input/output) REAL array, dimension (LDA, N)
                   On entry, the symmetric matrix A.  If UPLO =  'U',
                   the  leading  N-by-N  upper  triangular  part of A
                   contains the upper triangular part of  the  matrix
                   A.   If  UPLO = 'L', the leading N-by-N lower tri-
                   angular part of A contains  the  lower  triangular
                   part  of  the  matrix  A.  On exit, if JOBZ = 'V',
                   then if INFO  =  0,  A  contains  the  orthonormal
                   eigenvectors of the matrix A.  If JOBZ = 'N', then
                   on exit the lower triangle (if  UPLO='L')  or  the
                   upper  triangle  (if UPLO='U') of A, including the
                   diagonal, is destroyed.
    
         LDA       (input) INTEGER
                   The leading dimension of  the  array  A.   LDA  >=
                   max(1,N).
    
         W         (output) REAL array, dimension (N)
                   If INFO = 0, the eigenvalues in ascending order.
    
         WORK      (workspace/output) REAL array,
                   dimension (LWORK) On exit, if LWORK >  0,  WORK(1)
                   returns the optimal LWORK.
    
         LWORK     (input) INTEGER
                   The dimension of the  array  WORK.   If  N  <=  1,
                   LWORK  must  be at least 1.  If JOBZ = 'N' and N >
                   1, LWORK must be at least 2*N+1.  If  JOBZ  =  'V'
                   and N > 1, LWORK must be at least 1 + 5*N + 2*N*lg
                   N + 3*N**2, where lg( N )  =  smallest  integer  k
                   such that 2**k >= N.
    
         IWORK     (workspace/output)   INTEGER   array,    dimension
                   (LIWORK)
                   On exit, if  LIWORK  >  0,  IWORK(1)  returns  the
                   optimal LIWORK.
    
         LIWORK    (input) INTEGER
                   The dimension of the array  IWORK.   If  N  <=  1,
                   LIWORK must be at least 1.  If JOBZ  = 'N' and N >
                   1, LIWORK must be at least 1.  If JOBZ  = 'V'  and
                   N > 1, LIWORK must be at least 2 + 5*N.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
                   > 0:  if INFO = i, the algorithm  failed  to  con-
                   verge;  i off-diagonal elements of an intermediate
                   tridiagonal form did not converge to zero.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру