The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

sstedc (3)
  • >> sstedc (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         sstedc - compute all eigenvalues and, optionally,  eigenvec-
         tors  of a symmetric tridiagonal matrix using the divide and
         conquer method
    
    SYNOPSIS
         SUBROUTINE SSTEDC( COMPZ, N, D,  E,  Z,  LDZ,  WORK,  LWORK,
                   IWORK, LIWORK, INFO )
    
         CHARACTER COMPZ
    
         INTEGER INFO, LDZ, LIWORK, LWORK, N
    
         INTEGER IWORK( * )
    
         REAL D( * ), E( * ), WORK( * ), Z( LDZ, * )
    
    
    
         #include <sunperf.h>
    
         void sstedc(char compz, int n, float  *d,  float  *e,  float
                   *sz, int ldz, int *info) ;
    
    PURPOSE
         SSTEDC computes all eigenvalues and,  optionally,  eigenvec-
         tors  of a symmetric tridiagonal matrix using the divide and
         conquer method.  The eigenvectors of a  full  or  band  real
         symmetric  matrix  can  also be found if SSYTRD or SSPTRD or
         SSBTRD has been used to reduce this  matrix  to  tridiagonal
         form.
    
         This code makes very mild assumptions about  floating  point
         arithmetic.  It  will work on machines with a guard digit in
         add/subtract, or on  those  binary  machines  without  guard
         digits  which  subtract  like the Cray X-MP, Cray Y-MP, Cray
         C-90, or Cray-2.  It could conceivably fail  on  hexadecimal
         or  decimal  machines  without  guard digits, but we know of
         none.  See SLAED3 for details.
    
    
    ARGUMENTS
         COMPZ     (input) CHARACTER*1
                   = 'N':  Compute eigenvalues only.
                   = 'I':  Compute eigenvectors of tridiagonal matrix
                   also.
                   = 'V':  Compute  eigenvectors  of  original  dense
                   symmetric  matrix  also.  On entry, Z contains the
                   orthogonal matrix  used  to  reduce  the  original
                   matrix to tridiagonal form.
    
         N         (input) INTEGER
                   The dimension of the symmetric tridiagonal matrix.
                   N >= 0.
    
         D         (input/output) REAL array, dimension (N)
                   On entry, the diagonal elements of the tridiagonal
                   matrix.   On exit, if INFO = 0, the eigenvalues in
                   ascending order.
    
         E         (input/output) REAL array, dimension (N-1)
                   On entry, the subdiagonal elements of the tridiag-
                   onal matrix.  On exit, E has been destroyed.
    
         Z         (input/output) REAL array, dimension (LDZ,N)
                   On entry, if COMPZ =  'V',  then  Z  contains  the
                   orthogonal  matrix used in the reduction to tridi-
                   agonal form.  On exit, if INFO = 0, then if  COMPZ
                   =  'V', Z contains the orthonormal eigenvectors of
                   the original symmetric matrix, and if COMPZ = 'I',
                   Z  contains  the  orthonormal  eigenvectors of the
                   symmetric tridiagonal matrix.  If   COMPZ  =  'N',
                   then Z is not referenced.
    
         LDZ       (input) INTEGER
                   The leading dimension of the array Z.  LDZ  >=  1.
                   If eigenvectors are desired, then LDZ >= max(1,N).
    
         WORK      (workspace/output) REAL array,
                   dimension (LWORK) On exit, if LWORK >  0,  WORK(1)
                   returns the optimal LWORK.
    
         LWORK     (input) INTEGER
                   The dimension of the array WORK.  If COMPZ  =  'N'
                   or N <= 1 then LWORK must be at least 1.  If COMPZ
                   = 'V' and N > 1 then LWORK must be at least ( 1  +
                   3*N  +  2*N*lg N + 3*N**2 ), where lg( N ) = smal-
                   lest integer k such that 2**k >= N.   If  COMPZ  =
                   'I'  and  N  > 1 then LWORK must be at least ( 1 +
                   3*N + 2*N*lg N + 2*N**2 ).
    
         IWORK     (workspace/output)   INTEGER   array,    dimension
                   (LIWORK)
                   On exit, if  LIWORK  >  0,  IWORK(1)  returns  the
                   optimal LIWORK.
    
         LIWORK    (input) INTEGER
                   The dimension of the array IWORK.  If COMPZ =  'N'
                   or  N  <=  1  then  LIWORK must be at least 1.  If
                   COMPZ = 'V' and N > 1 then LIWORK must be at least
                   (  6 + 6*N + 5*N*lg N ).  If COMPZ = 'I' and N > 1
                   then LIWORK must be at least ( 2 + 5*N ).
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  The algorithm failed to  compute  an  eigen-
                   value while working on the submatrix lying in rows
                   and columns INFO/(N+1) through mod(INFO,N+1).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру