The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

sspco (3)
  • >> sspco (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         sspco - compute the UDU factorization and  condition  number
         of a symmetric matrix A in packed storage.  If the condition
         number is not needed then xSPFA is slightly faster.   It  is
         typical  to  follow  a call to xSPCO with a call to xSPSL to
         solve Ax =  b  or  to  xSPDI  to  compute  the  determinant,
         inverse, and inertia of A.
    
    SYNOPSIS
         SUBROUTINE DSPCO (DA, N, IPIVOT, DRCOND, DWORK)
    
         SUBROUTINE SSPCO (SA, N, IPIVOT, SRCOND, SWORK)
    
         SUBROUTINE ZSPCO (ZA, N, IPIVOT, DRCOND, ZWORK)
    
         SUBROUTINE CSPCO (CA, N, IPIVOT, SRCOND, CWORK)
    
    
    
         #include <sunperf.h>
    
         void dspco(double *dap, int n, int *kpvt, double *rcond) ;
    
         void sspco(float *sap, int n, int *kpvt, float *rcond) ;
    
         void zspco(doublecomplex *zap,  int  n,  int  *kpvt,  double
                   *rcond) ;
    
         void cspco(complex *cap, int n, int *kpvt, float *rcond) ;
    
    ARGUMENTS
         xA        On entry, the upper triangle of the matrix A.   On
                   exit, a UDU factorization of the matrix A.
    
         N         Order of the matrix A.  N >= 0.
    
         IPIVOT    On exit, a vector of pivot indices.
    
         xRCOND    On exit, an estimate of the  reciprocal  condition
                   number  of  A.  0.0 <= RCOND <= 1.0.  As the value
                   of RCOND gets smaller, operations with A  such  as
                   solving  Ax  = b may become less stable.  If RCOND
                   satisfies RCOND + 1.0 = 1.0 then A may be singular
                   to working precision.
    
         xWORK     Scratch array with a dimension of N.
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           LENGTA, N
               PARAMETER        (N = 3)
               PARAMETER        (LENGTA = (N * N + N) / 2)
         C
               DOUBLE PRECISION  A(LENGTA), B(N), RCOND, WORK(N)
               INTEGER           IPIVOT(N)
         C
               EXTERNAL          DSPCO, DSPSL
         C
         C     Initialize the array A to store in packed symmetric format
         C     the matrix A shown below.  Initialize the array B to store
         C     the vector b shown below.
         C
         C         1  0  4        30
         C     A = 0  2  0    b =  4
         C         4  0  1        15
         C
               DATA A / 1.0D0, 0.0D0, 2.0D0, 4.0D0, 0.0D0, 1.0D0 /
               DATA B / 3.0D1, 4.0D0, 1.5D1 /
         C
               PRINT 1000
               PRINT 1010, A(1), A(2), A(4)
               PRINT 1010, A(2), A(3), A(5)
               PRINT 1010, A(4), A(5), A(6)
               PRINT 1020
               PRINT 1030, B
               CALL DSPCO (A, N, IPIVOT, RCOND, WORK)
               IF ((RCOND + 1.0D0) .EQ. RCOND) THEN
                 PRINT 1040
               END IF
               CALL DSPSL (A, N, IPIVOT, B)
               PRINT 1050
               PRINT 1030, B
         C
          1000 FORMAT (1X, 'A:')
          1010 FORMAT (3(3X, F4.1))
          1020 FORMAT (/1X, 'b:')
          1030 FORMAT (3X, F4.1)
          1040 FORMAT (1X, 'A may be singular to working precision.')
          1050 FORMAT (/1X, 'A**(-1) * b:')
         C
               END
    
    SAMPLE OUTPUT
          A:
             1.0    0.0    4.0
             0.0    2.0    0.0
             4.0    0.0    1.0
    
          b:
            30.0
             4.0
            15.0
    
          A**(-1) * b:
             2.0
             2.0
             7.0
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру