NAME
slasq1 - SLASQ1 computes the singular values of a real N-
by-N bidiagonal matrix with diagonal D and off-diagonal E
SYNOPSIS
SUBROUTINE SLASQ1( N, D, E, WORK, INFO )
INTEGER INFO, N
REAL D( * ), E( * ), WORK( * )
#include <sunperf.h>
void slasq1(int n, float *d, float *e, int *info) ;
PURPOSE
SLASQ1 computes the singular values of a real N-by-N bidiag-
onal matrix with diagonal D and off-diagonal E. The singular
values are computed to high relative accuracy, barring
over/underflow or denormalization. The algorithm is
described in
"Accurate singular values and differential qd algorithms,"
by K. V. Fernando and B. N. Parlett,
Numer. Math., Vol-67, No. 2, pp. 191-230,1994.
See also
"Implementation of differential qd algorithms," by
K. V. Fernando and B. N. Parlett, Technical Report,
Department of Mathematics, University of California at
Berkeley, 1994 (Under preparation).
ARGUMENTS
N (input) INTEGER
The number of rows and columns in the matrix. N >=
0.
D (input/output) REAL array, dimension (N)
On entry, D contains the diagonal elements of the
bidiagonal matrix whose SVD is desired. On normal
exit, D contains the singular values in decreasing
order.
E (input/output) REAL array, dimension (N)
On entry, elements E(1:N-1) contain the off-
diagonal elements of the bidiagonal matrix whose
SVD is desired. On exit, E is overwritten.
WORK (workspace) REAL array, dimension (2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, the algorithm did not converge;
i specifies how many superdiagonals did not con-
verge.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |