NAME
slanv2 - compute the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form
SYNOPSIS
SUBROUTINE SLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS,
SN )
REAL A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
#include <sunperf.h>
void slanv2(float *sa, float *sb, float *sc, float *d, float
*rt1r, float *rt1i, float *rt2r, float *rt2i,
float *cs, float *sn) ;
PURPOSE
SLANV2 computes the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the
matrix, or 2) AA = DD and BB*CC < 0, so that AA + or -
sqrt(BB*CC) are complex conjugate eigenvalues.
ARGUMENTS
A (input/output) REAL
B (input/output) REAL C (input/output)
REAL D (input/output) REAL On entry, the
elements of the input matrix. On exit, they are
overwritten by the elements of the standardised
Schur form.
RT1R (output) REAL
RT1I (output) REAL RT2R (output) REAL RT2I
(output) REAL The real and imaginary parts of the
eigenvalues. If the eigenvalues are both real,
abs(RT1R) >= abs(RT2R); if the eigenvalues are a
complex conjugate pair, RT1I > 0.
CS (output) REAL
SN (output) REAL Parameters of the rotation
matrix.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |