NAME slags2 - compute 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) (-SNU CSU ) (-SNV CSV ) (-SNQ CSQ ) Z' denotes the transpose of Z SYNOPSIS SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ ) LOGICAL UPPER REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV #include <sunperf.h> void slags2(int upper, float a1, float a2, float a3, float b1, float b2, float b3, float *csu, float *snu, float *csv, float *snv, float *csq, float *snq); PURPOSE SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then ARGUMENTS UPPER (input) LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 (input) REAL A2 (input) REAL A3 (input) REAL On entry, A1, A2 and A3 are elements of the input 2- by-2 upper (lower) triangular matrix A. B1 (input) REAL B2 (input) REAL B3 (input) REAL On entry, B1, B2 and B3 are elements of the input 2- by-2 upper (lower) triangular matrix B. CSU (output) REAL SNU (output) REAL The desired orthogonal matrix U. CSV (output) REAL SNV (output) REAL The desired orthogonal matrix V. CSQ (output) REAL SNQ (output) REAL The desired orthogonal matrix Q.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |