The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

slaev2 (3)
  • >> slaev2 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         slaev2 - compute the eigendecomposition  of  a  2-by-2  sym-
         metric matrix  [ A B ]  [ B C ]
    
    SYNOPSIS
         SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
    
         REAL A, B, C, CS1, RT1, RT2, SN1
    
    
    
         #include <sunperf.h>
    
         void slaev2(float a, float b, float  c,  float  *rt1,  float
                   *rt2, float *cs1, float *sn1) ;
    
    PURPOSE
         SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric
         matrix
    
            [  A   B  ]
            [  B   C  ].
    
         On return, RT1 is the eigenvalue of larger  absolute  value,
         RT2  is  the  eigenvalue  of  smaller  absolute  value,  and
         (CS1,SN1) is the unit right eigenvector for RT1, giving  the
         decomposition
    
            [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
            [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
    
    
    ARGUMENTS
         A         (input) REAL
                   The (1,1) element of the 2-by-2 matrix.
    
         B         (input) REAL
                   The (1,2) element and the conjugate of  the  (2,1)
                   element of the 2-by-2 matrix.
    
         C         (input) REAL
                   The (2,2) element of the 2-by-2 matrix.
    
         RT1       (output) REAL
                   The eigenvalue of larger absolute value.
    
         RT2       (output) REAL
                   The eigenvalue of smaller absolute value.
    
         CS1       (output) REAL
                   SN1     (output) REAL The vector (CS1, SN1)  is  a
                   unit right eigenvector for RT1.
    
    FURTHER DETAILS
         RT1 is accurate to a few ulps barring over/underflow.
    
         RT2 may be inaccurate if there is  massive  cancellation  in
         the  determinant  A*C-B*B;  higher  precision  or  correctly
         rounded or correctly truncated arithmetic would be needed to
         compute RT2 accurately in all cases.
    
         CS1  and  SN1  are  accurate   to   a   few   ulps   barring
         over/underflow.
    
         Overflow is possible only if RT1 is within a factor of 5  of
         overflow.   Underflow  is harmless if the input data is 0 or
         exceeds
            underflow_threshold / macheps.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру