NAME slaed6 - compute the positive or negative root (closest to the origin) of f(x) = rho + (z(1) / (d(1)-x)) + (z(2) / (d(2)-x)) + (z(3) / (d(3)-x)) It is assumed that if ORGATI = .true SYNOPSIS SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO ) LOGICAL ORGATI INTEGER INFO, KNITER REAL FINIT, RHO, TAU REAL D( 3 ), Z( 3 ) #include <sunperf.h> void slaed6(int kniter, int orgati, float srho, float *d, float *sz, float finit, float *tau, int *info) ; PURPOSE SLAED6 computes the positive or negative root (closest to the origin) of z(1) z(2) z(3) f(x) = rho + --------- + ---------- + --------- d(1)-x d(2)-x d(3)-x otherwise it is between d(1) and d(2) This routine will be called by SLAED4 when necessary. In most cases, the root sought is the smallest in magnitude, though it might not be in some extremely rare situations. ARGUMENTS KNITER (input) INTEGER Refer to SLAED4 for its significance. ORGATI (input) LOGICAL If ORGATI is true, the needed root is between d(2) and d(3); otherwise it is between d(1) and d(2). See SLAED4 for further details. RHO (input) REAL Refer to the equation f(x) above. D (input) REAL array, dimension (3) D satisfies d(1) < d(2) < d(3). Z (input) REAL array, dimension (3) Each of the elements in z must be positive. FINIT (input) REAL The value of f at 0. It is more accurate than the one evaluated inside this routine (if someone wants to do so). TAU (output) REAL The root of the equation f(x). INFO (output) INTEGER = 0: successful exit > 0: if INFO = 1, failure to converge
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |