NAME
slaed6 - compute the positive or negative root (closest to
the origin) of f(x) = rho + (z(1) / (d(1)-x)) + (z(2) /
(d(2)-x)) + (z(3) / (d(3)-x)) It is assumed that if
ORGATI = .true
SYNOPSIS
SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU,
INFO )
LOGICAL ORGATI
INTEGER INFO, KNITER
REAL FINIT, RHO, TAU
REAL D( 3 ), Z( 3 )
#include <sunperf.h>
void slaed6(int kniter, int orgati, float srho, float *d,
float *sz, float finit, float *tau, int *info) ;
PURPOSE
SLAED6 computes the positive or negative root (closest to
the origin) of
z(1) z(2) z(3)
f(x) = rho + --------- + ---------- + ---------
d(1)-x d(2)-x d(3)-x
otherwise it is between d(1) and d(2)
This routine will be called by SLAED4 when necessary. In
most cases, the root sought is the smallest in magnitude,
though it might not be in some extremely rare situations.
ARGUMENTS
KNITER (input) INTEGER
Refer to SLAED4 for its significance.
ORGATI (input) LOGICAL
If ORGATI is true, the needed root is between d(2)
and d(3); otherwise it is between d(1) and d(2).
See SLAED4 for further details.
RHO (input) REAL
Refer to the equation f(x) above.
D (input) REAL array, dimension (3)
D satisfies d(1) < d(2) < d(3).
Z (input) REAL array, dimension (3)
Each of the elements in z must be positive.
FINIT (input) REAL
The value of f at 0. It is more accurate than the
one evaluated inside this routine (if someone
wants to do so).
TAU (output) REAL
The root of the equation f(x).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, failure to converge
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |