NAME slaed5 - subroutine computes the I-th eigenvalue of a sym- metric rank-one modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal elements in the array D are assumed to satisfy D(i) < D(j) for i < j SYNOPSIS SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM ) INTEGER I REAL DLAM, RHO REAL D( 2 ), DELTA( 2 ), Z( 2 ) #include <sunperf.h> void slaed5(int i, float *d, float *sz, float *delta, float srho, float *dlam) ; PURPOSE This subroutine computes the I-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. ARGUMENTS I (input) INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D (input) REAL array, dimension (2) The original eigenvalues. We assume D(1) < D(2). Z (input) REAL array, dimension (2) The components of the updating vector. DELTA (output) REAL array, dimension (2) The vector DELTA contains the information neces- sary to construct the eigenvectors. RHO (input) REAL The scalar in the symmetric updating formula. DLAM (output) REAL The computed lambda_I, the I-th updated eigen- value.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |