The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

slaed4 (3)
  • >> slaed4 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         slaed4 - subroutine computes the I-th updated eigenvalue  of
         a symmetric rank-one modification to a diagonal matrix whose
         elements are given in the array d, and that    D(i)  <  D(j)
         for i < j  and that RHO > 0
    
    SYNOPSIS
         SUBROUTINE SLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
    
         INTEGER I, INFO, N
    
         REAL DLAM, RHO
    
         REAL D( * ), DELTA( * ), Z( * )
    
    
    
         #include <sunperf.h>
    
         void slaed4(int n, int i, float *d, float *sz, float *delta,
                   float srho, float *dlam, int *info) ;
    
    PURPOSE
         This subroutine computes the I-th updated  eigenvalue  of  a
         symmetric  rank-one  modification to a diagonal matrix whose
         elements are given in the array d, and that no loss in  gen-
         erality.  The rank-one modified system is thus
    
                    diag( D )  +  RHO *  Z * Z_transpose.
    
         where we assume the Euclidean norm of Z is 1.
    
         The method consists of approximating the rational  functions
         in  the  secular  equation by simpler interpolating rational
         functions.
    
    
    ARGUMENTS
         N         (input) INTEGER
                   The length of all arrays.
    
         I         (input) INTEGER
                   The index of the eigenvalue to be computed.  1  <=
                   I <= N.
    
         D         (input) REAL array, dimension (N)
                   The original eigenvalues.  It is assumed that they
                   are in order, D(I) < D(J)  for I < J.
    
         Z         (input) REAL array, dimension (N)
                   The components of the updating vector.
    
         DELTA     (output) REAL array, dimension (N)
                   If N .ne. 1, DELTA contains (D(j) -  lambda_I)  in
                   its  j-th component.  If N = 1, then DELTA(1) = 1.
                   The vector DELTA contains the  information  neces-
                   sary to construct the eigenvectors.
    
         RHO       (input) REAL
                   The scalar in the symmetric updating formula.
    
         DLAM      (output) REAL
                   The computed lambda_I,  the  I-th  updated  eigen-
                   value.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   > 0:  if INFO = 1, the updating process failed.
    
    PARAMETERS
         Logical variable ORGATI (origin-at-i?) is used  for  distin-
         guishing whether D(i) or D(i+1) is treated as the origin.
    
         ORGATI = .true.    origin at i ORGATI = .false.   origin  at
         i+1
    
         Logical variable SWTCH3 (switch-for-3-poles?) is for  noting
         if we are working with THREE poles!
    
         MAXIT is the maximum number of iterations allowed  for  each
         eigenvalue.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру