NAME slaed0 - compute all eigenvalues and corresponding eigenvec- tors of a symmetric tridiagonal matrix using the divide and conquer method SYNOPSIS SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, WORK, IWORK, INFO ) INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ INTEGER IWORK( * ) REAL D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ), WORK( * ) #include <sunperf.h> void slaed0(int icompq, int qsiz, int n, float *d, float *e, float *q, int ldq, float *qstore, int ldqs, int *info) ; PURPOSE SLAED0 computes all eigenvalues and corresponding eigenvec- tors of a symmetric tridiagonal matrix using the divide and conquer method. ARGUMENTS ICOMPQ (input) INTEGER = 0: Compute eigenvalues only. = 1: Compute eigenvectors of original dense sym- metric matrix also. On entry, Q contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. = 2: Compute eigen- values and eigenvectors of tridiagonal matrix. QSIZ (input) INTEGER The dimension of the orthogonal matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) REAL array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues. E (input) REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q (input/output) REAL array, dimension (LDQ, N) On entry, Q must contain an N-by-N orthogonal matrix. If ICOMPQ = 0 Q is not referenced. If ICOMPQ = 1 On entry, Q is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time. If ICOMPQ = 2 On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. If eigen- vectors are desired, then LDQ >= max(1,N). In any case, LDQ >= 1. QSTORE (workspace) REAL array, dimension (LDQS, N) Referenced only when ICOMPQ = 1. Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS (input) INTEGER The leading dimension of the array QSTORE. If ICOMPQ = 1, then LDQS >= max(1,N). In any case, LDQS >= 1. WORK (workspace) REAL array, dimension (1 + 3*N + 2*N*lg N + 2*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) IWORK (workspace) INTEGER array, If ICOMPQ = 0 or 1, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N. ( lg( N ) = smallest integer k such that 2^k >= N ) If ICOMPQ = 2, the dimension of IWORK must be at least 2 + 5*N. INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an ille- gal value. > 0: The algorithm failed to compute an eigen- value while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |