The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

slaed0 (3)
  • >> slaed0 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         slaed0 - compute all eigenvalues and corresponding eigenvec-
         tors  of a symmetric tridiagonal matrix using the divide and
         conquer method
    
    SYNOPSIS
         SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E,  Q,  LDQ,  QSTORE,
                   LDQS, WORK, IWORK, INFO )
    
         INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ
    
         INTEGER IWORK( * )
    
         REAL D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ), WORK( *
                   )
    
    
    
         #include <sunperf.h>
    
         void slaed0(int icompq, int qsiz, int n, float *d, float *e,
                   float  *q,  int  ldq, float *qstore, int ldqs, int
                   *info) ;
    
    PURPOSE
         SLAED0 computes all eigenvalues and corresponding  eigenvec-
         tors  of a symmetric tridiagonal matrix using the divide and
         conquer method.
    
    
    ARGUMENTS
         ICOMPQ    (input) INTEGER
                   = 0:  Compute eigenvalues only.
                   = 1:  Compute eigenvectors of original dense  sym-
                   metric  matrix  also.   On  entry,  Q contains the
                   orthogonal matrix  used  to  reduce  the  original
                   matrix  to tridiagonal form.  = 2:  Compute eigen-
                   values and eigenvectors of tridiagonal matrix.
    
         QSIZ      (input) INTEGER
                   The dimension of the  orthogonal  matrix  used  to
                   reduce  the full matrix to tridiagonal form.  QSIZ
                   >= N if ICOMPQ = 1.
    
         N         (input) INTEGER
                   The dimension of the symmetric tridiagonal matrix.
                   N >= 0.
    
         D         (input/output) REAL array, dimension (N)
                   On entry, the main  diagonal  of  the  tridiagonal
                   matrix.  On exit, its eigenvalues.
    
         E         (input) REAL array, dimension (N-1)
                   The  off-diagonal  elements  of  the   tridiagonal
                   matrix.  On exit, E has been destroyed.
    
         Q         (input/output) REAL array, dimension (LDQ, N)
                   On entry, Q  must  contain  an  N-by-N  orthogonal
                   matrix.  If ICOMPQ = 0    Q is not referenced.  If
                   ICOMPQ = 1    On entry,  Q  is  a  subset  of  the
                   columns  of  the  orthogonal matrix used to reduce
                   the full matrix to tridiagonal form  corresponding
                   to  the  subset  of the full matrix which is being
                   decomposed at this time.   If  ICOMPQ  =  2     On
                   entry,  Q will be the identity matrix.  On exit, Q
                   contains  the  eigenvectors  of  the   tridiagonal
                   matrix.
    
         LDQ       (input) INTEGER
                   The leading dimension of the array Q.   If  eigen-
                   vectors  are  desired,  then  LDQ >= max(1,N).  In
                   any case,  LDQ >= 1.
    
                   QSTORE (workspace) REAL array, dimension (LDQS, N)
                   Referenced  only  when  ICOMPQ = 1.  Used to store
                   parts of the eigenvector matrix when the  updating
                   matrix multiplies take place.
    
         LDQS      (input) INTEGER
                   The leading dimension of  the  array  QSTORE.   If
                   ICOMPQ  = 1, then  LDQS >= max(1,N).  In any case,
                   LDQS >= 1.
    
         WORK      (workspace) REAL array,
                   dimension (1 + 3*N + 2*N*lg N + 2*N**2) ( lg( N  )
                   = smallest integer k such that 2^k >= N )
    
         IWORK     (workspace) INTEGER array,
                   If ICOMPQ = 0 or 1, the dimension of IWORK must be
                   at least 6 + 6*N + 5*N*lg N.  ( lg( N ) = smallest
                   integer k such that 2^k >= N ) If ICOMPQ = 2,  the
                   dimension of IWORK must be at least 2 + 5*N.
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  The algorithm failed to  compute  an  eigen-
                   value while working on the submatrix lying in rows
                   and columns INFO/(N+1) through mod(INFO,N+1).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру