NAME
sggsvp - compute orthogonal matrices U, V and Q such that
N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0
SYNOPSIS
SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B,
LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
IWORK, TAU, WORK, INFO )
CHARACTER JOBQ, JOBU, JOBV
INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
REAL TOLA, TOLB
INTEGER IWORK( * )
REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), TAU( * ), U(
LDU, * ), V( LDV, * ), WORK( * )
#include <sunperf.h>
void sggsvp(char jobu, char jobv, char jobq, int m, int p,
int n, float *sa, int lda, float *sb, int ldb,
float tola, float tolb, int *k, int *l, float *su,
int ldu, float *v, int ldv, float *q, int ldq,
float *tau, int *info) ;
PURPOSE
SGGSVP computes orthogonal matrices U, V and Q such that
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
= K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
V'*B*Q = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are non-
singular upper triangular; A23 is L-by-L upper triangular if
M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal.
K+L = the effective numerical rank of the (M+P)-by-N matrix
(A',B')'. Z' denotes the transpose of Z.
This decomposition is the preprocessing step for computing
the Generalized Singular Value Decomposition (GSVD), see
subroutine SGGSVD.
ARGUMENTS
JOBU (input) CHARACTER*1
= 'U': Orthogonal matrix U is computed;
= 'N': U is not computed.
JOBV (input) CHARACTER*1
= 'V': Orthogonal matrix V is computed;
= 'N': V is not computed.
JOBQ (input) CHARACTER*1
= 'Q': Orthogonal matrix Q is computed;
= 'N': Q is not computed.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
P (input) INTEGER
The number of rows of the matrix B. P >= 0.
N (input) INTEGER
The number of columns of the matrices A and B. N
>= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A. On exit, A con-
tains the triangular (or trapezoidal) matrix
described in the Purpose section.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,M).
B (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B. On exit, B con-
tains the triangular matrix described in the Pur-
pose section.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,P).
TOLA (input) REAL
TOLB (input) REAL TOLA and TOLB are the thres-
holds to determine the effective numerical rank of
matrix B and a subblock of A. Generally, they are
set to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB =
MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and
TOLB may affect the size of backward errors of the
decomposition.
K (output) INTEGER
L (output) INTEGER On exit, K and L specify
the dimension of the subblocks described in Pur-
pose. K + L = effective numerical rank of
(A',B')'.
U (output) REAL array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
LDU (input) INTEGER
The leading dimension of the array U. LDU >=
max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
V (output) REAL array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
LDV (input) INTEGER
The leading dimension of the array V. LDV >=
max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
Q (output) REAL array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >=
max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK (workspace) INTEGER array, dimension (N)
TAU (workspace) REAL array, dimension (N)
WORK (workspace) REAL array, dimension (max(3*N,M,P))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
FURTHER DETAILS
The subroutine uses LAPACK subroutine SGEQPF for the QR fac-
torization with column pivoting to detect the effective
numerical rank of the a matrix. It may be replaced by a
better rank determination strategy.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |