NAME sggrqf - compute a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B SYNOPSIS SUBROUTINE SGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, INFO ) INTEGER INFO, LDA, LDB, LWORK, M, N, P REAL A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), WORK( * ) #include <sunperf.h> void sggrqf(int m, int p, int n, float *sa, int lda, float *taua, float *sb, int ldb, float *taub, int *info) ; PURPOSE SGGRQF computes a generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B: A = R*Q, B = Z*T*Q, where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal matrix, and R and T assume one of the forms: if M<=N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, N-M M ( R21 ) N N where R12 or R21 is upper triangular, and if P>=N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, ( 0 ) P-N P N-P N where T11 is upper triangular. In particular, if B is square and nonsingular, the GRQ fac- torization of A and B implicitly gives the RQ factorization of A*inv(B): A*inv(B) = (R*inv(T))*Z' where inv(B) denotes the inverse of the matrix B, and Z' denotes the transpose of the matrix Z. ARGUMENTS M (input) INTEGER The number of rows of the matrix A. M >= 0. P (input) INTEGER The number of rows of the matrix B. P >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if M <= N, the upper triangle of the subarray A(1:M,N- M+1:N) contains the M-by-M upper triangular matrix R; if M > N, the elements on and above the (M-N)- th subdiagonal contain the M-by-N upper tra- pezoidal matrix R; the remaining elements, with the array TAUA, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAUA (output) REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q (see Further Details). B (input/output) REAL array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, the elements on and above the diagonal of the array contain the min(P,N)-by-N upper trapezoidal matrix T (T is upper triangular if P >= N); the elements below the diagonal, with the array TAUB, represent the orthogonal matrix Z as a product of elementary reflectors (see Further Details). LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,P). TAUB (output) REAL array, dimension (min(P,N)) The scalar factors of the elementary reflectors which represent the orthogonal matrix Z (see Further Details). WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N,M,P). For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the optimal blocksize for the RQ factorization of an M-by-N matrix, NB2 is the optimal blocksize for the QR factorization of a P-by-N matrix, and NB3 is the optimal blocksize for a call of SORMRQ. INFO (output) INTEGER = 0: successful exit < 0: if INF0= -i, the i-th argument had an ille- gal value. FURTHER DETAILS The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - taua * v * v' where taua is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and taua in TAUA(i). To form Q explicitly, use LAPACK subroutine SORGRQ. To use Q to update another matrix, use LAPACK subroutine SORMRQ. The matrix Z is represented as a product of elementary reflectors Z = H(1) H(2) . . . H(k), where k = min(p,n). Each H(i) has the form H(i) = I - taub * v * v' where taub is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine SORGQR. To use Z to update another matrix, use LAPACK subroutine SORMQR.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |