NAME sgegv - compute for a pair of n-by-n real nonsymmetric matrices A and B, the generalized eigenvalues (alphar +/- alphai*i, beta), and optionally, the left and/or right gen- eralized eigenvectors (VL and VR) SYNOPSIS SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) CHARACTER JOBVL, JOBVR INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), B( LDB, * ), BETA( * ), VL( LDVL, * ), VR( LDVR, * ), WORK( * ) #include <sunperf.h> void sgegv(char jobvl, char jobvr, int n, float *sa, int lda, float *sb, int ldb, float *alphar, float *alphai, float *beta, float *vl, int ldvl, float *vr, int ldvr, int *info); PURPOSE SGEGV computes for a pair of n-by-n real nonsymmetric matrices A and B, the generalized eigenvalues (alphar +/- alphai*i, beta), and optionally, the left and/or right gen- eralized eigenvectors (VL and VR). A generalized eigenvalue for a pair of matrices (A,B) is, roughly speaking, a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpre- tation for beta=0, and even for both being zero. A good beginning reference is the book, "Matrix Computations", by G. Golub & C. van Loan (Johns Hopkins U. Press) A right generalized eigenvector corresponding to a general- ized eigenvalue w for a pair of matrices (A,B) is a vector r such that (A - w B) r = 0 . A left generalized eigen- vector is a vector l such that l**H * (A - w B) = 0, where l**H is the conjugate-transpose of l. Note: this routine performs "full balancing" on A and B -- see "Further Details", below. ARGUMENTS JOBVL (input) CHARACTER*1 = 'N': do not compute the left generalized eigen- vectors; = 'V': compute the left generalized eigenvectors. JOBVR (input) CHARACTER*1 = 'N': do not compute the right generalized eigenvectors; = 'V': compute the right generalized eigenvec- tors. N (input) INTEGER The order of the matrices A, B, VL, and VR. N >= 0. A (input/output) REAL array, dimension (LDA, N) On entry, the first of the pair of matrices whose generalized eigenvalues and (optionally) general- ized eigenvectors are to be computed. On exit, the contents will have been destroyed. (For a description of the contents of A on exit, see "Further Details", below.) LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) REAL array, dimension (LDB, N) On entry, the second of the pair of matrices whose generalized eigenvalues and (optionally) general- ized eigenvectors are to be computed. On exit, the contents will have been destroyed. (For a description of the contents of B on exit, see "Further Details", below.) LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHAR (output) REAL array, dimension (N) ALPHAI (output) REAL array, dimension (N) BETA (output) REAL array, dimension (N) On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will be the generalized eigenvalues. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if posi- tive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) negative. Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHAR and ALPHAI will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VL (output) REAL array, dimension (LDVL,N) If JOBVL = 'V', the left generalized eigenvectors. (See "Purpose", above.) Real eigenvectors take one column, complex take two columns, the first for the real part and the second for the imaginary part. Complex eigenvectors correspond to an eigenvalue with positive imaginary part. Each eigenvector will be scaled so the largest com- ponent will have abs(real part) + abs(imag. part) = 1, *except* that for eigenvalues with alpha=beta=0, a zero vector will be returned as the corresponding eigenvector. Not referenced if JOBVL = 'N'. LDVL (input) INTEGER The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N. VR (output) REAL array, dimension (LDVR,N) If JOBVL = 'V', the right generalized eigenvec- tors. (See "Purpose", above.) Real eigenvectors take one column, complex take two columns, the first for the real part and the second for the imaginary part. Complex eigenvectors correspond to an eigenvalue with positive imaginary part. Each eigenvector will be scaled so the largest component will have abs(real part) + abs(imag. part) = 1, *except* that for eigenvalues with alpha=beta=0, a zero vector will be returned as the corresponding eigenvector. Not referenced if JOBVR = 'N'. LDVR (input) INTEGER The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. WORK (workspace/output) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,8*N). For good performance, LWORK must gen- erally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute: NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR; The optimal LWORK is: 2*N + MAX( 6*N, N*(NB+1) ). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an ille- gal value. = 1,...,N: The QZ iteration failed. No eigenvec- tors have been calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indi- cate LAPACK problems: =N+1: error return from SGGBAL =N+2: error return from SGEQRF =N+3: error return from SORMQR =N+4: error return from SORGQR =N+5: error return from SGGHRD =N+6: error return from SHGEQZ (other than failed iteration) =N+7: error return from STGEVC =N+8: error return from SGGBAK (computing VL) =N+9: error return from SGGBAK (computing VR) =N+10: error return from SLASCL (various calls) FURTHER DETAILS Balancing --------- This driver calls SGGBAL to both permute and scale rows and columns of A and B. The permutations PL and PR are chosen so that PL*A*PR and PL*B*R will be upper triangular except for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i and j as close together as possible. The diagonal scaling matrices DL and DR are chosen so that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one (except for the elements that start out zero.) After the eigenvalues and eigenvectors of the balanced matrices have been computed, SGGBAK transforms the eigenvec- tors back to what they would have been (in perfect arith- metic) if they had not been balanced. Contents of A and B on Exit -------- -- - --- - -- ---- If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or both), then on exit the arrays A and B will contain the real Schur form[*] of the "balanced" versions of A and B. If no eigenvectors are computed, then only the diagonal blocks will be correct. [*] See SHGEQZ, SGEGS, or read the book "Matrix Computa- tions", by Golub & van Loan, pub. by Johns Hopkins U. Press.
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |