NAME
sgeev - compute for an N-by-N real nonsymmetric matrix A,
the eigenvalues and, optionally, the left and/or right
eigenvectors
SYNOPSIS
SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL,
VR, LDVR, WORK, LWORK, INFO )
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), WI( * ),
WORK( * ), WR( * )
#include <sunperf.h>
void sgeev(char jobvl, char jobvr, int n, float *sa, int
lda, float *wr, float *wi, float *vl, int ldvl,
float *vr, int ldvr, int *info) ;
PURPOSE
SGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvec-
tors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean
norm equal to 1 and largest component real.
ARGUMENTS
JOBVL (input) CHARACTER*1
= 'N': left eigenvectors of A are not computed;
= 'V': left eigenvectors of A are computed.
JOBVR (input) CHARACTER*1
= 'N': right eigenvectors of A are not computed;
= 'V': right eigenvectors of A are computed.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A. On exit, A has
been overwritten.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N) WR and
WI contain the real and imaginary parts, respec-
tively, of the computed eigenvalues. Complex con-
jugate pairs of eigenvalues appear consecutively
with the eigenvalue having the positive imaginary
part first.
VL (output) REAL array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are
stored one after another in the columns of VL, in
the same order as their eigenvalues. If JOBVL =
'N', VL is not referenced. If the j-th eigenvalue
is real, then u(j) = VL(:,j), the j-th column of
VL. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then u(j) = VL(:,j) +
i*VL(:,j+1) and
u(j+1) = VL(:,j) - i*VL(:,j+1).
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1;
if JOBVL = 'V', LDVL >= N.
VR (output) REAL array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are
stored one after another in the columns of VR, in
the same order as their eigenvalues. If JOBVR =
'N', VR is not referenced. If the j-th eigenvalue
is real, then v(j) = VR(:,j), the j-th column of
VR. If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, then v(j) = VR(:,j) +
i*VR(:,j+1) and
v(j+1) = VR(:,j) - i*VR(:,j+1).
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1;
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >=
max(1,3*N), and if JOBVL = 'V' or JOBVR = 'V',
LWORK >= 4*N. For good performance, LWORK must
generally be larger.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: if INFO = i, the QR algorithm failed to com-
pute all the eigenvalues, and no eigenvectors have
been computed; elements i+1:N of WR and WI contain
eigenvalues which have converged.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |