The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

rfft3f (3)
  • >> rfft3f (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         rfft3f - compute the Fourier coefficients of a real periodic
         sequence.   The  xFFT operations are unnormalized, so a call
         of xFFT3F followed by a call of  xFFT3B  will  multiply  the
         input sequence by M*N*K.
    
    SYNOPSIS
         SUBROUTINE RFFT3F (PLACE, FULL, M, N, K, SX, LDX,  SY,  LDY,
                   RWSAVE)
    
         SUBROUTINE DFFT3F (PLACE, FULL, M, N, K, DX, LDX,  DY,  LDY,
                   DWSAVE)
    
    
    
         #include <sunperf.h>
    
         void rfft3f (char place, char full, int m,  int  n,  int  k,
                   float  *sx,  int  ldx,  float  *sy, int ldy, float
                   *wsave) ;
    
         void dfft3f (char place, char full, int m,  int  n,  int  k,
                   double  *dx,  int ldx, double *dy, int ldy, double
                   *wsave) ;
    
    ARGUMENTS
         PLACE     Select an in-place ('I' or  'i')  or  out-of-place
                   ('O' or 'o') transform.
    
         FULL      Select a full  ('F'  or  'f')  or  partial  ('  ')
                   representation  of  the  results.   If  the caller
                   selects full representation  then  an  MxNxK  real
                   array  will  transform to produce an MxNxK complex
                   array.   If  the  caller  does  not  select   full
                   representation  then  an  MxNxK  real  array  will
                   transform to  a  (M/2+1)xNxK  complex  array  that
                   takes  advantage  of  the symmetry properties of a
                   transformed real sequence.
    
         M         Number of rows to be transformed.   These  subrou-
                   tines  are  most  efficient when M is a product of
                   small primes.  M >= 0.
    
         N         Number of columns to be transformed.   These  sub-
                   routines are most efficient when N is a product of
                   small primes.  N >= 0.
    
         K         Number of planes to be transformed.  These subrou-
                   tines  are  most  efficient when K is a product of
                   small primes.  K >= 0.
    
         xX        On entry, a  three-dimensional  array  xX(LDX,N,K)
                   that contains the sequences to be transformed.  On
                   exit, the  transformed  sequences  if  the  caller
                   selected an in-place transform.
    
         LDX       Leading dimension of the array containing the data
                   to be transformed.  LDX >= M.
    
         xY        On  exit,  xY(LDY,N,K)  contains  the  transformed
                   sequences  if  the caller selected an out of place
                   transform.  If the  caller  selected  an  in-place
                   transform then this argument is never referenced.
    
         LDY       Leading dimension of the array for an out-of-place
                   transform.  LDY >= M.
    
         xWSAVE    On entry, an array with dimension of at least (M +
                   N  +  MAX(M,N,K)  + 45).  The array must have been
                   initialized by xFFT3I.
    
         LWSAVE    Length of the xWSAVE array.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру