The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dtrsyl (3)
  • >> dtrsyl (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dtrsyl - solve the real Sylvester matrix equation
    
    SYNOPSIS
         SUBROUTINE DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB,
                   C, LDC, SCALE, INFO )
    
         CHARACTER TRANA, TRANB
    
         INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
    
         DOUBLE PRECISION SCALE
    
         DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * )
    
    
    
         #include <sunperf.h>
    
         void dtrsyl(char trana, char tranb, int isgn, int m, int  n,
                   double  *da,  int lda, double *db, int ldb, double
                   *dc, int ldc, double *dscale, int *info) ;
    
    PURPOSE
         DTRSYL solves the real Sylvester matrix equation:
    
            op(A)*X + X*op(B) = scale*C or
            op(A)*X - X*op(B) = scale*C,
    
         where op(A) = A or A**T, and  A and B are both upper  quasi-
         triangular. A is M-by-M and B is N-by-N; the right hand side
         C and the solution X are M-by-N;  and  scale  is  an  output
         scale factor, set <= 1 to avoid overflow in X.
    
         A and B must be in Schur  canonical  form  (as  returned  by
         DHSEQR),  that is, block upper triangular with 1-by-1 and 2-
         by-2 diagonal blocks; each 2-by-2  diagonal  block  has  its
         diagonal  elements  equal  and  its off-diagonal elements of
         opposite sign.
    
    
    ARGUMENTS
         TRANA     (input) CHARACTER*1
                   Specifies the option op(A):
                   = 'N': op(A) = A    (No transpose)
                   = 'T': op(A) = A**T (Transpose)
                   = 'C': op(A) = A**H (Conjugate transpose  =  Tran-
                   spose)
    
         TRANB     (input) CHARACTER*1
                   Specifies the option op(B):
                   = 'N': op(B) = B    (No transpose)
                   = 'T': op(B) = B**T (Transpose)
                   = 'C': op(B) = B**H (Conjugate transpose  =  Tran-
                   spose)
    
         ISGN      (input) INTEGER
                   Specifies the sign in the equation:
                   = +1: solve op(A)*X + X*op(B) = scale*C
                   = -1: solve op(A)*X - X*op(B) = scale*C
    
         M         (input) INTEGER
                   The order of the matrix A, and the number of  rows
                   in the matrices X and C. M >= 0.
    
         N         (input) INTEGER
                   The order of the  matrix  B,  and  the  number  of
                   columns in the matrices X and C. N >= 0.
    
         A         (input) DOUBLE PRECISION array, dimension (LDA,M)
                   The upper  quasi-triangular  matrix  A,  in  Schur
                   canonical form.
    
         LDA       (input) INTEGER
                   The leading dimension  of  the  array  A.  LDA  >=
                   max(1,M).
    
         B         (input) DOUBLE PRECISION array, dimension (LDB,N)
                   The upper  quasi-triangular  matrix  B,  in  Schur
                   canonical form.
    
         LDB       (input) INTEGER
                   The leading dimension  of  the  array  B.  LDB  >=
                   max(1,N).
    
         C         (input/output) DOUBLE PRECISION  array,  dimension
                   (LDC,N)
                   On entry, the M-by-N right hand side matrix C.  On
                   exit, C is overwritten by the solution matrix X.
    
         LDC       (input) INTEGER
                   The leading dimension  of  the  array  C.  LDC  >=
                   max(1,M)
    
         SCALE     (output) DOUBLE PRECISION
                   The scale factor, scale, set <= 1 to  avoid  over-
                   flow in X.
    
         INFO      (output) INTEGER
                   = 0: successful exit
                   < 0: if INFO = -i, the i-th argument had an  ille-
                   gal value
                   = 1: A and B have  common  or  very  close  eigen-
                   values;  perturbed  values  were used to solve the
                   equation (but the matrices A and B are unchanged).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру