NAME
dtrrfs - provide error bounds and backward error estimates
for the solution to a system of linear equations with a tri-
angular coefficient matrix
SYNOPSIS
SUBROUTINE DTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B,
LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDA, LDB, LDX, N, NRHS
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), BERR( * ), FERR(
* ), WORK( * ), X( LDX, * )
#include <sunperf.h>
void dtrrfs(char uplo, char trans, char diag, int n, int
nrhs, double *da, int lda, double *db, int ldb,
double *dx, int ldx, double *ferr, double *berr,
int *info) ;
PURPOSE
DTRRFS provides error bounds and backward error estimates
for the solution to a system of linear equations with a tri-
angular coefficient matrix.
The solution matrix X must be computed by DTRTRS or some
other means before entering this routine. DTRRFS does not
do iterative refinement because doing so cannot improve the
backward error.
ARGUMENTS
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Tran-
spose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices B and X. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular matrix A. If UPLO = 'U', the lead-
ing N-by-N upper triangular part of the array A
contains the upper triangular matrix, and the
strictly lower triangular part of A is not refer-
enced. If UPLO = 'L', the leading N-by-N lower
triangular part of the array A contains the lower
triangular matrix, and the strictly upper triangu-
lar part of A is not referenced. If DIAG = 'U',
the diagonal elements of A are also not referenced
and are assumed to be 1.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,N).
B (input) DOUBLE PRECISION array, dimension
(LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
X (input) DOUBLE PRECISION array, dimension
(LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solu-
tion vector X(j) (the j-th column of the solution
matrix X). If XTRUE is the true solution
corresponding to X(j), FERR(j) is an estimated
upper bound for the magnitude of the largest ele-
ment in (X(j) - XTRUE) divided by the magnitude of
the largest element in X(j). The estimate is as
reliable as the estimate for RCOND, and is almost
always a slight overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each
solution vector X(j) (i.e., the smallest relative
change in any element of A or B that makes X(j) an
exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension
(3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |