The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dstsv (3)
  • >> dstsv (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dstsv - compute the solution to a system of linear equations
         A * X = B where A is a symmetric tridiagonal matrix
    
    SYNOPSIS
         SUBROUTINE DSTSV( N, L, D, SUBL, IPIV, INFO )
    
         INTEGER INFO, N
    
         DOUBLE PRECISION D( * )
    
         DOUBLE PRECISION L( * ), SUBL( * )
    
    
    
         #include <sunperf.h>
    
         void dstsv(int n, double *l, double *d,  double  *subl,  int
                   *info) ;
    
    PURPOSE
         DSTSV computes the solution to a system of linear  equations
         A * X = B where A is a symmetric tridiagonal matrix.
    
    
    ARGUMENTS
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         L         (input/output) DOUBLE PRECISION  array,  dimension
                   (N)
                   On entry, the n-1 subdiagonal elements of the tri-
                   diagonal  matrix A.  On exit, part of the factori-
                   zation of A.
    
         D         (input/output) DOUBLE PRECISION  array,  dimension
                   (N)
                   On entry, the n diagonal elements of the tridiago-
                   nal matrix A.  On exit, the n diagonal elements of
                   the diagonal matrix D from the factorization of A.
    
         SUBL      (output) DOUBLE PRECISION array, dimension (N)
                   On exit, part of the factorization of A.
    
         IPIV      (output) INTEGER array, dimension (N)
                   On exit, the pivot indices of the factorization.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
                   > 0:  if INFO = i, D(k,k) is  exactly  zero.   The
                   factorization  has  been  completed, but the block
                   diagonal matrix D is exactly singular and division
                   by zero will occur if it is used to solve a system
                   of equations.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру