NAME
dstedc - compute all eigenvalues and, optionally, eigenvec-
tors of a symmetric tridiagonal matrix using the divide and
conquer method
SYNOPSIS
SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK,
IWORK, LIWORK, INFO )
CHARACTER COMPZ
INTEGER INFO, LDZ, LIWORK, LWORK, N
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
#include <sunperf.h>
void dstedc(char compz, int n, double *d, double *e, double
*dz, int ldz, int *info) ;
PURPOSE
DSTEDC computes all eigenvalues and, optionally, eigenvec-
tors of a symmetric tridiagonal matrix using the divide and
conquer method. The eigenvectors of a full or band real
symmetric matrix can also be found if DSYTRD or DSPTRD or
DSBTRD has been used to reduce this matrix to tridiagonal
form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray
C-90, or Cray-2. It could conceivably fail on hexadecimal
or decimal machines without guard digits, but we know of
none. See DLAED3 for details.
ARGUMENTS
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'I': Compute eigenvectors of tridiagonal matrix
also.
= 'V': Compute eigenvectors of original dense
symmetric matrix also. On entry, Z contains the
orthogonal matrix used to reduce the original
matrix to tridiagonal form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix.
N >= 0.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the diagonal elements of the tridiagonal
matrix. On exit, if INFO = 0, the eigenvalues in
ascending order.
E (input/output) DOUBLE PRECISION array, dimension
(N-1)
On entry, the subdiagonal elements of the tridiag-
onal matrix. On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension
(LDZ,N)
On entry, if COMPZ = 'V', then Z contains the
orthogonal matrix used in the reduction to tridi-
agonal form. On exit, if INFO = 0, then if COMPZ
= 'V', Z contains the orthonormal eigenvectors of
the original symmetric matrix, and if COMPZ = 'I',
Z contains the orthonormal eigenvectors of the
symmetric tridiagonal matrix. If COMPZ = 'N',
then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) DOUBLE PRECISION array,
dimension (LWORK) On exit, if LWORK > 0, WORK(1)
returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If COMPZ = 'N'
or N <= 1 then LWORK must be at least 1. If COMPZ
= 'V' and N > 1 then LWORK must be at least ( 1 +
3*N + 2*N*lg N + 3*N**2 ), where lg( N ) = smal-
lest integer k such that 2**k >= N. If COMPZ =
'I' and N > 1 then LWORK must be at least ( 1 +
3*N + 2*N*lg N + 2*N**2 ).
IWORK (workspace/output) INTEGER array, dimension
(LIWORK)
On exit, if LIWORK > 0, IWORK(1) returns the
optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. If COMPZ = 'N'
or N <= 1 then LIWORK must be at least 1. If
COMPZ = 'V' and N > 1 then LIWORK must be at least
( 6 + 6*N + 5*N*lg N ). If COMPZ = 'I' and N > 1
then LIWORK must be at least ( 2 + 5*N ).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: The algorithm failed to compute an eigen-
value while working on the submatrix lying in rows
and columns INFO/(N+1) through mod(INFO,N+1).
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |