The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dsptrd (3)
  • >> dsptrd (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dsptrd - reduce a real symmetric matrix A stored  in  packed
         form  to symmetric tridiagonal form T by an orthogonal simi-
         larity transformation
    
    SYNOPSIS
         SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO )
    
         CHARACTER UPLO
    
         INTEGER INFO, N
    
         DOUBLE PRECISION AP( * ), D( * ), E( * ), TAU( * )
    
    
    
         #include <sunperf.h>
    
         void dsptrd(char uplo, int n, double *dap, double *d, double
                   *e, double *tau, int *info) ;
    
    PURPOSE
         DSPTRD reduces a real symmetric matrix A  stored  in  packed
         form  to symmetric tridiagonal form T by an orthogonal simi-
         larity transformation: Q**T * A * Q = T.
    
    
    ARGUMENTS
         UPLO      (input) CHARACTER*1
                   = 'U':  Upper triangle of A is stored;
                   = 'L':  Lower triangle of A is stored.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         AP        (input/output) DOUBLE PRECISION  array,  dimension
                   (N*(N+1)/2)
                   On entry, the upper or lower triangle of the  sym-
                   metric  matrix  A,  packed  columnwise in a linear
                   array.  The j-th column of  A  is  stored  in  the
                   array  AP  as  follows:  if UPLO = 'U', AP(i + (j-
                   1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L',  AP(i
                   + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.  On exit,
                   if UPLO = 'U', the diagonal and first  superdiago-
                   nal of A are overwritten by the corresponding ele-
                   ments of the tridiagonal matrix T,  and  the  ele-
                   ments  above  the  first  superdiagonal,  with the
                   array TAU, represent the orthogonal matrix Q as  a
                   product  of  elementary reflectors; if UPLO = 'L',
                   the diagonal and first subdiagonal of A are  over-
                   written  by the corresponding elements of the tri-
                   diagonal matrix T,  and  the  elements  below  the
                   first  subdiagonal,  with the array TAU, represent
                   the orthogonal matrix Q as a product of elementary
                   reflectors. See Further Details.  D       (output)
                   DOUBLE PRECISION array, dimension (N) The diagonal
                   elements  of  the  tridiagonal  matrix  T:  D(i) =
                   A(i,i).
    
         E         (output) DOUBLE PRECISION array, dimension (N-1)
                   The  off-diagonal  elements  of  the   tridiagonal
                   matrix  T:   E(i) = A(i,i+1) if UPLO = 'U', E(i) =
                   A(i+1,i) if UPLO = 'L'.
    
         TAU       (output) DOUBLE PRECISION array, dimension (N-1)
                   The scalar factors of  the  elementary  reflectors
                   (see Further Details).
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
    
    FURTHER DETAILS
         If UPLO = 'U', the matrix Q is represented as a  product  of
         elementary reflectors
    
            Q = H(n-1) . . . H(2) H(1).
    
         Each H(i) has the form
    
            H(i) = I - tau * v * v'
    
         where tau is a real scalar, and v is a real vector with
         v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
         overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
    
         If UPLO = 'L', the matrix Q is represented as a  product  of
         elementary reflectors
    
            Q = H(1) H(2) . . . H(n-1).
    
         Each H(i) has the form
    
            H(i) = I - tau * v * v'
    
         where tau is a real scalar, and v is a real vector with
         v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
         overwriting A(i+2:n,i), and tau is stored in TAU(i).
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру