NAME
dpttrf - compute the factorization of a real symmetric posi-
tive definite tridiagonal matrix A
SYNOPSIS
SUBROUTINE DPTTRF( N, D, E, INFO )
INTEGER INFO, N
DOUBLE PRECISION D( * ), E( * )
#include <sunperf.h>
void dpttrf(int n, double *d, double *e, int *info) ;
PURPOSE
DPTTRF computes the factorization of a real symmetric posi-
tive definite tridiagonal matrix A.
If the subdiagonal elements of A are supplied in the array
E, the factorization has the form A = L*D*L**T, where D is
diagonal and L is unit lower bidiagonal; if the superdiago-
nal elements of A are supplied, it has the form A =
U**T*D*U, where U is unit upper bidiagonal. (The two forms
are equivalent if A is real.)
ARGUMENTS
N (input) INTEGER
The order of the matrix A. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the n diagonal elements of the tridiago-
nal matrix A. On exit, the n diagonal elements of
the diagonal matrix D from the L*D*L**T factoriza-
tion of A.
E (input/output) DOUBLE PRECISION array, dimension
(N-1)
On entry, the (n-1) off-diagonal elements of the
tridiagonal matrix A. On exit, the (n-1) off-
diagonal elements of the unit bidiagonal factor L
or U from the factorization of A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, the leading minor of order i is
not positive definite; if i < N, the factorization
could not be completed, while if i = N, the fac-
torization was completed, but D(N) = 0.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |