NAME
dptrfs - improve the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive
definite and tridiagonal, and provides error bounds and
backward error estimates for the solution
SYNOPSIS
SUBROUTINE DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
FERR, BERR, WORK, INFO )
INTEGER INFO, LDB, LDX, N, NRHS
DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ), E(
* ), EF( * ), FERR( * ), WORK( * ), X( LDX, * )
#include <sunperf.h>
void dptrfs(int n, int nrhs, double *d, double *e, double
*df, double *ef, double *db, int ldb, double *dx,
int ldx, double *ferr, double *berr, int *info) ;
PURPOSE
DPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive
definite and tridiagonal, and provides error bounds and
backward error estimates for the solution.
ARGUMENTS
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrix B. NRHS >= 0.
D (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix
A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal
matrix A.
DF (input) DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D
from the factorization computed by DPTTRF.
EF (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit
bidiagonal factor L from the factorization com-
puted by DPTTRF.
B (input) DOUBLE PRECISION array, dimension
(LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
X (input/output) DOUBLE PRECISION array, dimension
(LDX,NRHS)
On entry, the solution matrix X, as computed by
DPTTRS. On exit, the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to
X(j), FERR(j) is an estimated upper bound for the
magnitude of the largest element in (X(j) - XTRUE)
divided by the magnitude of the largest element in
X(j).
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each
solution vector X(j) (i.e., the smallest relative
change in any element of A or B that makes X(j) an
exact solution).
WORK (workspace) DOUBLE PRECISION array, dimension
(2*N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |