The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dppequ (3)
  • >> dppequ (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dppequ - compute row and column scalings intended to equili-
         brate  a  symmetric  positive  definite  matrix  A in packed
         storage and reduce its condition number (with respect to the
         two-norm)
    
    SYNOPSIS
         SUBROUTINE DPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
    
         CHARACTER UPLO
    
         INTEGER INFO, N
    
         DOUBLE PRECISION AMAX, SCOND
    
         DOUBLE PRECISION AP( * ), S( * )
    
    
    
         #include <sunperf.h>
    
         void dppequ(char uplo, int n, double *dap, double *s, double
                   *scond, double *amax, int *info) ;
    
    PURPOSE
         DPPEQU computes row and column scalings intended to  equili-
         brate  a  symmetric  positive  definite  matrix  A in packed
         storage and reduce its condition number (with respect to the
         two-norm).      S     contains     the     scale    factors,
         S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix B with
         elements  B(i,j)=S(i)*A(i,j)*S(j)  has ones on the diagonal.
         This choice of S puts the condition number  of  B  within  a
         factor  N of the smallest possible condition number over all
         possible diagonal scalings.
    
    
    ARGUMENTS
         UPLO      (input) CHARACTER*1
                   = 'U':  Upper triangle of A is stored;
                   = 'L':  Lower triangle of A is stored.
    
         N         (input) INTEGER
                   The order of the matrix A.  N >= 0.
    
         AP        (input)   DOUBLE   PRECISION   array,    dimension
                   (N*(N+1)/2)
                   The upper  or  lower  triangle  of  the  symmetric
                   matrix  A,  packed  columnwise  in a linear array.
                   The j-th column of A is stored in the array AP  as
                   follows:   if  UPLO  =  'U',  AP(i  + (j-1)*j/2) =
                   A(i,j) for 1<=i<=j; if UPLO  =  'L',  AP(i  +  (j-
                   1)*(2n-j)/2) = A(i,j) for j<=i<=n.
    
         S         (output) DOUBLE PRECISION array, dimension (N)
                   If INFO = 0, S contains the scale factors for A.
    
         SCOND     (output) DOUBLE PRECISION
                   If INFO = 0, S contains the ratio of the  smallest
                   S(i)  to  the  largest  S(i).  If SCOND >= 0.1 and
                   AMAX is neither too large nor too small, it is not
                   worth scaling by S.
    
         AMAX      (output) DOUBLE PRECISION
                   Absolute value of largest matrix element.  If AMAX
                   is  very close to overflow or very close to under-
                   flow, the matrix should be scaled.
    
         INFO      (output) INTEGER
                   = 0:  successful exit
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value
                   > 0:  if INFO = i, the i-th  diagonal  element  is
                   nonpositive.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру