The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dppco (3)
  • >> dppco (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dppco -  compute  a  Cholesky  factorization  and  condition
         number  of  a symmetric positive definite matrix A in packed
         storage.  If the condition number is not needed  then  xPPFA
         is slightly faster.  It is typical to follow a call to xPPCO
         with a call to xPPSL to solve Ax = b or to xPPDI to  compute
         the determinant and inverse of A.
    
    SYNOPSIS
         SUBROUTINE DPPCO (DA, N, DRCOND, DWORK, INFO)
    
         SUBROUTINE SPPCO (SA, N, SRCOND, SWORK, INFO)
    
         SUBROUTINE ZPPCO (ZA, N, DRCOND, ZWORK, INFO)
    
         SUBROUTINE CPPCO (CA, N, SRCOND, CWORK, INFO)
    
    
    
         #include <sunperf.h>
    
         void dppco(double *dap, int n, double *drcond, int *info) ;
    
         void sppco(float *sap, int n, float *srcond, int *info) ;
    
         void zppco(doublecomplex *zap, int n,  double  *drcond,  int
                   *info) ;
    
         void cppco(complex *cap, int n, float *srcond, int *info) ;
    
    ARGUMENTS
         xA        On entry, the upper triangle of the matrix A.   On
                   exit, a Cholesky factorization of the matrix A.
    
         N         Order of the matrix A.  N * 0.
    
         xRCOND    On exit, an estimate of the  reciprocal  condition
                   number  of A.  0.0 <= RCOND <= 1.0.   As the value
                   of RCOND gets smaller, operations with A  such  as
                   solving  Ax  = b may become less stable.  If RCOND
                   satisfies RCOND + 1.0 = 1.0 then A may be singular
                   to working precision.
    
         xWORK     Scratch array with a dimension of N.
    
         INFO      On exit:
                   INFO = 0  Subroutine completed normally.
                   INFO * 0  Returns a value k if the  leading  minor
                   of order k is not positive definite.
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER           LENGTA, N
               PARAMETER        (N = 4)
               PARAMETER        (LENGTA = (N * N + N) / 2)
         C
               DOUBLE PRECISION  A(LENGTA), B(N), RCOND, WORK(N)
               INTEGER           INFO
         C
               EXTERNAL          DPPCO, DPPSL
         C
         C     Initialize the array A to store in packed symmetric storage
         C     mode the matrix A shown below.  Initialize the array B to store
         C     the matrix B shown below.
         C
         C         4  3  2  1        60
         C     A = 3  4  3  2    b = 20
         C         2  3  4  3        20
         C         1  2  3  4        60
         C
               DATA A / 4.0D0, 3.0D0, 4.0D0, 2.0D0, 3.0D0, 4.0D0,
              $         1.0D0, 2.0D0, 3.0D0, 4.0D0 /
               DATA B / 6.0D1, 2.0D1, 2.0D1, 6.0D1 /
         C
               PRINT 1000
               PRINT 1010, A(1), A(2), A(4), A(7)
               PRINT 1010, A(2), A(3), A(5), A(8)
               PRINT 1010, A(4), A(5), A(6), A(9)
               PRINT 1010, A(7), A(8), A(9), A(10)
               PRINT 1020
               PRINT 1030, B
               CALL DPPCO (A, N, RCOND, WORK, INFO)
               IF ((RCOND + 1.0D0) .EQ. RCOND) THEN
                 PRINT 1040
               END IF
               CALL DPPSL (A, N, B)
               PRINT 1050, RCOND
               PRINT 1060
               PRINT 1030, B
         C
          1000 FORMAT (1X, 'A in full form:')
          1010 FORMAT (5(3X, F7.3))
          1020 FORMAT (/1X, 'b:')
          1030 FORMAT (3X, F7.3)
          1040 FORMAT (1X, 'A may be singular to working precision.')
          1050 FORMAT (/1X, 'Reciprocal condition of A:', F5.2)
          1060 FORMAT (/1X, 'A**(-1) * b:')
         C
               END
    
    SAMPLE OUTPUT
          A in full form:
              4.000     3.000     2.000     1.000
              3.000     4.000     3.000     2.000
              2.000     3.000     4.000     3.000
              1.000     2.000     3.000     4.000
    
          b:
             60.000
             20.000
             20.000
             60.000
    
          Reciprocal condition of A: 0.04
    
          A**(-1) * b:
             32.000
            -20.000
            -20.000
             32.000
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру