The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlas2 (3)
  • >> dlas2 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlas2 - compute the singular values of the 2-by-2 matrix   [
         F G ]  [ 0 H ]
    
    SYNOPSIS
         SUBROUTINE DLAS2( F, G, H, SSMIN, SSMAX )
    
         DOUBLE PRECISION F, G, H, SSMAX, SSMIN
    
    
    
         #include <sunperf.h>
    
         void dlas2(double f, double g, double h, double *ssmin, dou-
                   ble *ssmax) ;
    
    PURPOSE
         DLAS2  computes the singular values of the 2-by-2 matrix
            [  F   G  ]
            [  0   H  ].  On return, SSMIN is  the  smaller  singular
         value and SSMAX is the larger singular value.
    
    
    ARGUMENTS
         F         (input) DOUBLE PRECISION
                   The (1,1) element of the 2-by-2 matrix.
    
         G         (input) DOUBLE PRECISION
                   The (1,2) element of the 2-by-2 matrix.
    
         H         (input) DOUBLE PRECISION
                   The (2,2) element of the 2-by-2 matrix.
    
         SSMIN     (output) DOUBLE PRECISION
                   The smaller singular value.
    
         SSMAX     (output) DOUBLE PRECISION
                   The larger singular value.
    
    FURTHER DETAILS
         Barring over/underflow, all output quantities are correct to
         within  a  few  units  in the last place (ulps), even in the
         absence of a guard digit in addition/subtraction.
    
         In IEEE arithmetic, the code works correctly if  one  matrix
         element is infinite.
    
         Overflow will not occur unless the  largest  singular  value
         itself  overflows,  or is within a few ulps of overflow. (On
         machines with partial overflow, like the Cray, overflow  may
         occur  if the largest singular value is within a factor of 2
         of overflow.)
         Underflow is harmless if underflow  is  gradual.  Otherwise,
         results may correspond to a matrix modified by perturbations
         of size near the underflow threshold.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру