The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlaqgb (3)
  • >> dlaqgb (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlaqgb - equilibrate a general M by N band matrix A with  KL
         subdiagonals and KU superdiagonals using the row and scaling
         factors in the vectors R and C
    
    SYNOPSIS
         SUBROUTINE DLAQGB( M, N, KL, KU, AB,  LDAB,  R,  C,  ROWCND,
                   COLCND, AMAX, EQUED )
    
         CHARACTER EQUED
    
         INTEGER KL, KU, LDAB, M, N
    
         DOUBLE PRECISION AMAX, COLCND, ROWCND
    
         DOUBLE PRECISION AB( LDAB, * ), C( * ), R( * )
    
    
    
         #include <sunperf.h>
    
         void dlaqgb(int m, int n, int kl, int ku, double  *dab,  int
                   ldab,  double *r, double *dc, double *rowcnd, dou-
                   ble *colcnd, double amax, char *equed);
    
    PURPOSE
         DLAQGB equilibrates a general M by N band matrix A  with  KL
         subdiagonals and KU superdiagonals using the row and scaling
         factors in the vectors R and C.
    
    
    ARGUMENTS
         M         (input) INTEGER
                   The number of rows of the matrix A.  M >= 0.
    
         N         (input) INTEGER
                   The number of columns of the matrix A.  N >= 0.
    
         KL        (input) INTEGER
                   The number of subdiagonals within the band  of  A.
                   KL >= 0.
    
         KU        (input) INTEGER
                   The number of superdiagonals within the band of A.
                   KU >= 0.
    
         AB        (input/output) DOUBLE PRECISION  array,  dimension
                   (LDAB,N)
                   On entry, the matrix A in band storage, in rows  1
                   to KL+KU+1.  The j-th column of A is stored in the
                   j-th  column  of  the   array   AB   as   follows:
                   AB(ku+1+i-j,j)     =     A(i,j)    for    max(1,j-
                   ku)<=i<=min(m,j+kl)
    
                   On exit, the  equilibrated  matrix,  in  the  same
                   storage  format  as  A.  See EQUED for the form of
                   the equilibrated matrix.
    
         LDAB      (input) INTEGER
                   The leading dimension of the  array  AB.   LDA  >=
                   KL+KU+1.
    
         R         (output) DOUBLE PRECISION array, dimension (M)
                   The row scale factors for A.
    
         C         (output) DOUBLE PRECISION array, dimension (N)
                   The column scale factors for A.
    
         ROWCND    (output) DOUBLE PRECISION
                   Ratio of the smallest R(i) to the largest R(i).
    
         COLCND    (output) DOUBLE PRECISION
                   Ratio of the smallest C(i) to the largest C(i).
    
         AMAX      (input) DOUBLE PRECISION
                   Absolute value of largest matrix entry.
    
         EQUED     (output) CHARACTER*1
                   Specifies the form of equilibration that was done.
                   = 'N':  No equilibration
                   =  'R':   Row  equilibration,  i.e.,  A  has  been
                   premultiplied  by diag(R).  = 'C':  Column equili-
                   bration,  i.e.,  A  has  been  postmultiplied   by
                   diag(C).   =  'B':  Both row and column equilibra-
                   tion, i.e., A has been replaced by diag(R) *  A  *
                   diag(C).
    
    PARAMETERS
         THRESH is a threshold value used to decide if row or  column
         scaling  should  be  done  based  on the ratio of the row or
         column scaling factors.  If ROWCND < THRESH, row scaling  is
         done, and if COLCND < THRESH, column scaling is done.
    
         LARGE and SMALL are threshold values used to decide  if  row
         scaling  should  be  done  based on the absolute size of the
         largest matrix element.  If AMAX > LARGE or  AMAX  <  SMALL,
         row scaling is done.
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру