The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlagtf (3)
  • >> dlagtf (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlagtf - factorize the matrix (T-lambda*I), where T is an  n
         by  n  tridiagonal  matrix  and  lambda is a scalar, as   T-
         lambda*I = PLU,
    
    SYNOPSIS
         SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
    
         INTEGER INFO, N
    
         DOUBLE PRECISION LAMBDA, TOL
    
         INTEGER IN( * )
    
         DOUBLE PRECISION A( * ), B( * ), C( * ), D( * )
    
    
    
         #include <sunperf.h>
    
         void dlagtf(int n, double *da, double  lambda,  double  *db,
                   double  *dc,  double  tol, double *d, int *in, int
                   *info) ;
    
    PURPOSE
         DLAGTF factorizes the matrix (T - lambda*I), where T is an n
         by n tridiagonal matrix and lambda is a scalar, as
    
         where P is a permutation matrix, L is a unit lower tridiago-
         nal  matrix  with at most one non-zero sub-diagonal elements
         per column and U is an upper triangular matrix with at  most
         two non-zero super-diagonal elements per column.
    
         The factorization is obtained by Gaussian  elimination  with
         partial pivoting and implicit row scaling.
    
         The parameter LAMBDA is included  in  the  routine  so  that
         DLAGTF  may  be  used, in conjunction with DLAGTS, to obtain
         eigenvectors of T by inverse iteration.
    
    
    ARGUMENTS
         N         (input) INTEGER
                   The order of the matrix T.
    
         A         (input/output) DOUBLE PRECISION  array,  dimension
                   (N)
                   On entry, A must contain the diagonal elements  of
                   T.
    
                   On exit, A is overwritten by the n  diagonal  ele-
                   ments  of  the  upper  triangular  matrix U of the
                   factorization of T.
    
         LAMBDA    (input) DOUBLE PRECISION
                   On entry, the scalar lambda.
    
         B         (input/output) DOUBLE PRECISION  array,  dimension
                   (N-1)
                   On entry, B must contain the (n-1)  super-diagonal
                   elements of T.
    
                   On exit, B is  overwritten  by  the  (n-1)  super-
                   diagonal  elements of the matrix U of the factori-
                   zation of T.
    
         C         (input/output) DOUBLE PRECISION  array,  dimension
                   (N-1)
                   On entry, C must contain  the  (n-1)  sub-diagonal
                   elements of T.
    
                   On exit,  C  is  overwritten  by  the  (n-1)  sub-
                   diagonal  elements of the matrix L of the factori-
                   zation of T.
    
         TOL       (input) DOUBLE PRECISION
                   On entry, a relative tolerance  used  to  indicate
                   whether or not the matrix (T - lambda*I) is nearly
                   singular. TOL should normally be chose as approxi-
                   mately  the largest relative error in the elements
                   of T. For  example,  if  the  elements  of  T  are
                   correct  to  about 4 significant figures, then TOL
                   should be set to about 5*10**(-4). If TOL is  sup-
                   plied  as less than eps, where eps is the relative
                   machine precision, then the value eps is  used  in
                   place of TOL.
    
         D         (output) DOUBLE PRECISION array, dimension (N-2)
                   On exit, D is  overwritten  by  the  (n-2)  second
                   super-diagonal  elements  of  the  matrix U of the
                   factorization of T.
    
         IN        (output) INTEGER array, dimension (N)
                   On exit, IN contains details  of  the  permutation
                   matrix  P.  If  an interchange occurred at the kth
                   step of the elimination, then IN(k) = 1, otherwise
                   IN(k)  = 0. The element IN(n) returns the smallest
                   positive integer j such that
    
                   abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
    
                   where norm( A(j) ) denotes the sum of the absolute
                   values  of the jth row of the matrix A. If no such
                   j exists then IN(n) is returned as zero. If  IN(n)
                   is  returned  as positive, then a diagonal element
                   of U is small, indicating that (T -  lambda*I)  is
                   singular or nearly singular,
    
         INFO      (output)
                   = 0   : successful exit
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру