NAME dlaed9 - find the roots of the secular equation, as defined by the values in D, Z, and RHO, between KSTART and KSTOP SYNOPSIS SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W, S, LDS, INFO ) INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N DOUBLE PRECISION RHO DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ), W( * ) #include <sunperf.h> void dlaed9(int k, int kstart, int kstop, int n, double *d, double *q, int ldq, double drho, double *dlamda, double *w, double *s, int lds, int *info) ; PURPOSE DLAED9 finds the roots of the secular equation, as defined by the values in D, Z, and RHO, between KSTART and KSTOP. It makes the appropriate calls to DLAED4 and then stores the new matrix of eigenvectors for use in calculating the next level of Z vectors. ARGUMENTS K (input) INTEGER The number of terms in the rational function to be solved by DLAED4. K >= 0. KSTART (input) INTEGER KSTOP (input) INTEGER The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP are to be com- puted. 1 <= KSTART <= KSTOP <= K. N (input) INTEGER The number of rows and columns in the Q matrix. N >= K (delation may result in N > K). D (output) DOUBLE PRECISION array, dimension (N) D(I) contains the updated eigenvalues for KSTART <= I <= KSTOP. Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N) LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max( 1, N ). RHO (input) DOUBLE PRECISION The value of the parameter in the rank one update equation. RHO >= 0 required. DLAMDA (input) DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. W (input) DOUBLE PRECISION array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating vec- tor. S (output) DOUBLE PRECISION array, dimension (LDS, K) Will contain the eigenvectors of the repaired matrix which will be stored for subsequent Z vec- tor calculation and multiplied by the previously accumulated eigenvectors to update the system. LDS (input) INTEGER The leading dimension of S. LDS >= max( 1, K ). INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an ille- gal value. > 0: if INFO = 1, an eigenvalue did not converge
Закладки на сайте Проследить за страницей |
Created 1996-2024 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |