The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

dlaed9 (3)
  • >> dlaed9 (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         dlaed9 - find the roots of the secular equation, as  defined
         by the values in D, Z, and RHO, between KSTART and KSTOP
    
    SYNOPSIS
         SUBROUTINE DLAED9( K, KSTART, KSTOP,  N,  D,  Q,  LDQ,  RHO,
                   DLAMDA, W, S, LDS, INFO )
    
         INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N
    
         DOUBLE PRECISION RHO
    
         DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, *
                   ), W( * )
    
    
    
         #include <sunperf.h>
    
         void dlaed9(int k, int kstart, int kstop, int n, double  *d,
                   double  *q,  int ldq, double drho, double *dlamda,
                   double *w, double *s, int lds, int *info) ;
    
    PURPOSE
         DLAED9 finds the roots of the secular equation,  as  defined
         by  the  values  in D, Z, and RHO, between KSTART and KSTOP.
         It makes the appropriate calls to DLAED4 and then stores the
         new  matrix  of eigenvectors for use in calculating the next
         level of Z vectors.
    
    
    ARGUMENTS
         K         (input) INTEGER
                   The number of terms in the rational function to be
                   solved by DLAED4.  K >= 0.
    
         KSTART    (input) INTEGER
                   KSTOP   (input) INTEGER  The  updated  eigenvalues
                   Lambda(I),  KSTART  <=  I  <= KSTOP are to be com-
                   puted.  1 <= KSTART <= KSTOP <= K.
    
         N         (input) INTEGER
                   The number of rows and columns in the Q matrix.  N
                   >= K (delation may result in N > K).
    
         D         (output) DOUBLE PRECISION array, dimension (N)
                   D(I) contains the updated eigenvalues  for  KSTART
                   <= I <= KSTOP.
    
         Q         (workspace)  DOUBLE  PRECISION  array,   dimension
                   (LDQ,N)
    
         LDQ       (input) INTEGER
                   The leading dimension of the array Q.  LDQ >= max(
                   1, N ).
    
         RHO       (input) DOUBLE PRECISION
                   The value of the parameter in the rank one  update
                   equation.  RHO >= 0 required.
    
         DLAMDA    (input) DOUBLE PRECISION array, dimension (K)
                   The first K elements of this array contain the old
                   roots of the deflated updating problem.  These are
                   the poles of the secular equation.
    
         W         (input) DOUBLE PRECISION array, dimension (K)
                   The first K elements of  this  array  contain  the
                   components of the deflation-adjusted updating vec-
                   tor.
    
         S         (output) DOUBLE PRECISION array,  dimension  (LDS,
                   K)
                   Will contain  the  eigenvectors  of  the  repaired
                   matrix  which will be stored for subsequent Z vec-
                   tor calculation and multiplied by  the  previously
                   accumulated eigenvectors to update the system.
    
         LDS       (input) INTEGER
                   The leading dimension of S.  LDS >= max( 1, K ).
    
         INFO      (output) INTEGER
                   = 0:  successful exit.
                   < 0:  if INFO = -i, the i-th argument had an ille-
                   gal value.
                   > 0:  if INFO = 1, an eigenvalue did not converge
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2024 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру