NAME
dlaed9 - find the roots of the secular equation, as defined
by the values in D, Z, and RHO, between KSTART and KSTOP
SYNOPSIS
SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO,
DLAMDA, W, S, LDS, INFO )
INTEGER INFO, K, KSTART, KSTOP, LDQ, LDS, N
DOUBLE PRECISION RHO
DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, *
), W( * )
#include <sunperf.h>
void dlaed9(int k, int kstart, int kstop, int n, double *d,
double *q, int ldq, double drho, double *dlamda,
double *w, double *s, int lds, int *info) ;
PURPOSE
DLAED9 finds the roots of the secular equation, as defined
by the values in D, Z, and RHO, between KSTART and KSTOP.
It makes the appropriate calls to DLAED4 and then stores the
new matrix of eigenvectors for use in calculating the next
level of Z vectors.
ARGUMENTS
K (input) INTEGER
The number of terms in the rational function to be
solved by DLAED4. K >= 0.
KSTART (input) INTEGER
KSTOP (input) INTEGER The updated eigenvalues
Lambda(I), KSTART <= I <= KSTOP are to be com-
puted. 1 <= KSTART <= KSTOP <= K.
N (input) INTEGER
The number of rows and columns in the Q matrix. N
>= K (delation may result in N > K).
D (output) DOUBLE PRECISION array, dimension (N)
D(I) contains the updated eigenvalues for KSTART
<= I <= KSTOP.
Q (workspace) DOUBLE PRECISION array, dimension
(LDQ,N)
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(
1, N ).
RHO (input) DOUBLE PRECISION
The value of the parameter in the rank one update
equation. RHO >= 0 required.
DLAMDA (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the old
roots of the deflated updating problem. These are
the poles of the secular equation.
W (input) DOUBLE PRECISION array, dimension (K)
The first K elements of this array contain the
components of the deflation-adjusted updating vec-
tor.
S (output) DOUBLE PRECISION array, dimension (LDS,
K)
Will contain the eigenvectors of the repaired
matrix which will be stored for subsequent Z vec-
tor calculation and multiplied by the previously
accumulated eigenvectors to update the system.
LDS (input) INTEGER
The leading dimension of S. LDS >= max( 1, K ).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an ille-
gal value.
> 0: if INFO = 1, an eigenvalue did not converge
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |