NAME
dlaed6 - compute the positive or negative root (closest to
the origin) of f(x) = rho + (z(1) / (d(1)-x)) + (z(2) /
(d(2)-x)) + (z(3) / (d(3)-x)) It is assumed that if
ORGATI = .true
SYNOPSIS
SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU,
INFO )
LOGICAL ORGATI
INTEGER INFO, KNITER
DOUBLE PRECISION FINIT, RHO, TAU
DOUBLE PRECISION D( 3 ), Z( 3 )
#include <sunperf.h>
void dlaed6(int kniter, int orgati, double drho, double *d,
double *dz, double finit, double *tau,
int *info) ;
PURPOSE
DLAED6 computes the positive or negative root (closest to
the origin) of
z(1) z(2) z(3)
f(x) = rho + --------- + ---------- + ---------
d(1)-x d(2)-x d(3)-x
otherwise it is between d(1) and d(2)
This routine will be called by DLAED4 when necessary. In
most cases, the root sought is the smallest in magnitude,
though it might not be in some extremely rare situations.
ARGUMENTS
KNITER (input) INTEGER
Refer to DLAED4 for its significance.
ORGATI (input) LOGICAL
If ORGATI is true, the needed root is between d(2)
and d(3); otherwise it is between d(1) and d(2).
See DLAED4 for further details.
RHO (input) DOUBLE PRECISION
Refer to the equation f(x) above.
D (input) DOUBLE PRECISION array, dimension (3)
D satisfies d(1) < d(2) < d(3).
Z (input) DOUBLE PRECISION array, dimension (3)
Each of the elements in z must be positive.
FINIT (input) DOUBLE PRECISION
The value of f at 0. It is more accurate than the
one evaluated inside this routine (if someone
wants to do so).
TAU (output) DOUBLE PRECISION
The root of the equation f(x).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = 1, failure to converge
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |